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ABSTRACT

The visual analysis of surfuce shape from texture and surface contour is trcated within a computational
framework. The aim of this study is o determine valid constraints that are sufficient to allow surface
orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture
and of surface contours. 'T'he report is in three parts.

— Part I consists of a review of major theories of surface perception, a discussion of vision as computation and

of the naturc in which threc-dimensional information is manifest in the image, and a study of the
representation of local surface orientation. y A polar form of representation is proposed which makes explicit
surface ¢t ("which way™) and surface slant ("how much™).

-, Part 1l reconsiders the familiar *texwre gradient”. The perspective transformation is described as two
independent transformations that take a patch of surface texture into a patch of image texture: scaling
inversely by the distance to the surface and foreshortening according to surface orientation. A measure of
texture that varics only with scaling is described (called the characteristic dimension) whose reciprocal gives
distance information. Evidence for uniformity of the physical texture (requisite for computing the depth map
by this method) is provided by local regularity and global similarity of the image texture. A mcasure of
texture that varics only with foreshortening may, in principle, be used to compute surface orientation, but it
would be difficult to interpret without knowledge of the physical texture.

__~sPart Tl examines our perception of surface contours, an ability that has reccived almost no theorctical

attention. -1t is shown that surface contours are strong sources of information about local surface shape.
Plausible constraints are given that would allow surface orientation to be computed from the image of surface
contours. ‘The problem of inferring surface shape from the image of a surface contour has two aspects:
constraining the shape of the curve in three dimensions on the basis of its image. and constraining the
relationship between the surface contour and the underlying surface. Computational constraints for both
aspccts of the problem are demonstrated, and their plausibilitv is discussed. Implications for the analysis of
specular reflections and shading are noted.

Thesis Supervisor: David Marr
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PART 1
THE COMPUTATIONAL BASIS

1. INTRODUCTION

Texture and surface contours are two sources of information about the 3-D shape of visible surfaces which is
available in a single image. ‘T'his report examines the computational basis for deriving an explicit description
of surface shapc from texture and from surface contours. In cach case, the computation cannot be achicved
solely on the basis of the image information -- additional constraints must be introduced. Identifying some of
these constraints is the primary goal this report. Summarics of the three sections of the report are given in the
following.

1.1 Summary of part 1

A review of current theories of surface perception is provided which leads to (a) a discussion of how 3-D
information is preserved in the image and (b) a discussion of the representation of surfaces.

1. 3-D information is present in the image, in part, as gcometrical configurations
such as parallclism, inflection points, and regularity. While often described as
invariants, they do not have unique inverses back into three dimensions -- very
different 3-1) configurations may project to the same image configuration. So their
1-Dinterpretation must be further constrained.

2. Surface orientation is probably represented in a polar form which makes explicit
the oricntation of surface ¢/t ("which way™) and the magnitude of surface slant
("how much”) rather than the well-known Cartesian form bascd on Gradient
space. The rcasons are:

(a) Surface orientation (up to a reflection in slant) is naturally represented in a
polar form. The ambiguity in the direction of surface tilt is implicit when tilt is
specificd only as orientation (0 € 1 < #). ‘This ambiguity would have to be

expressed explicitly in a Cartesian form,

(b) The computations of slant and of tilt may then be performed independently.

(c) 1t is obscrved that imprecision in apparent slant, when present, is not
necessarily accompanied by imprecision in tilt. ‘This is more casily attributed to a
polar form which orthogonalizes slant and tilt, than to a Cartesian form (each of
whose components necessarily are functions of slant and tilt).

(d) Since information about the oricatation of surface tilt is often more reliable
than information about the magnitude of the slant, discontinuitics in surface
orientation arc more reliably detected when those components arc independent.
Furthermore, the detection of discontinuitics in surface oricntation can then be
treated as two distinct "subproblems™:  detecting tilt discontinuitics and detecting
slant discontinuitics.
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3. Slant is probably not represented by cither the tangent or the cosine of the slant
angle (those being two natural choices). On the other hand, slant represented
direetly in terms of slant angle would require an internal precision of no more than
than one part in onc hundred o account for the experimental data.

1.2 Summary of part Il

The sccond part of the report re-examines the problems of extracting surface shape information from the
familiar "texture gradient”. The results arc summarized in the following:

1. The perspective projection may be usefully thought of as comprising two
independent transformations to any patch of surface texture: scaling and
forcshortening. Scaling is due to distance, foreshoricning is due to surface
orientation. An orthogonal decomposition of the problems of computing distance
and surface oricntation is thercfore suggested: When computing distance, the
texture measure should vary only with scaling; when computing surface
orientation, the measure should vary only with foreshortening.

2. Texture density is not a uscful measure for computing distance or surface ]
orientation, since it varies with both scaling and foreshortening.

3. Distance up to a scale factor may be computed from the reciprocals of
characteristic dimensions, which correspond to nonforcshortened dimensions on
the surface. Characteristic dimensions may be defined geometrically by the
following: (a) they are locally parallel, (b) they are oriented perpendicular to the
texture gradient, and (¢) they are parallel to the orientation of greatest texture .
regularity. The computation requircs that the surface texture be uniform. E .

' 4. Evidence for uniformity of the actual surface texture is both global and local.
Locally the texture must project as regular; globally the texture must be
qualitatively similar. The assumption that allows one to deduce uniformity is as
follows; if the surface texture has small size variance (which may be detected
locally), the mean sizc is assumed constant regardless of where the texture is placed
on the surface. Justification for this assumption stems from the following:
constraints on the texture size that cause it to be roughly constant (and therefore of
small variance) often occur independent of position on the surface. {

.

5. Surface oricntation may be computed from the depth map (by computing the
gradient of distance) when significant scaling variation is present in the image,
otherwise the depth map indicates a flat surface despite the foreshortening 7
gradient (this occurs with curved surfaces in orthographic projection).  But L
measures of foreshortening that do not vary with scaling (such as aspect ratio) are !
difficult to interpret unless the particular foreshoriening function is known which .
relates the measure to surface slant. Furthermore, successive occlusion associated {
with viewing texture which lies in relief refative to the mean surface level acts to
confound the apparent foreshortening, Slant is therefore difficult to accurately
compute. However the tilt may be computed as the orientation of the
characteristic dimensions.

1.3 Summary of part 111

‘The third part of the report examines our perceplion of surface contours, (¢.g.. the edges of shadows cast on a

surface, gloss contours on specular surfaces, wrinkles, scams, and pigmentation markings). Generally the
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contours interior 0 the sithouette of an object have been regarded as merely contributing to texture, or to
making the surface appear solid, or o simply increasing the complexity of the image.

-8- Introduction

contours provide information about surface shape, given certain restrictions on their interpretation.

1. The analysis of the shape of a surface from surface contours may be decomposed
into two problems:  reconstructing the corresponding 3-1) curves (the contour
generators) and determining their relation to the surface.  This decomposition
scparates the problem of determining the projective gecometry from that of
determining the intrinsic gcometry.

2. The first problem is constrained by the following restrictions: general position,
planarity, symmetry, and minimum curvature variation.

3. The sccond problem is reduced by assuming the angle between the surface and
the plane containing the contour generator is constant. Then if that angle is a right
angle, the contour generator is geodesic; if the angle is zero, the contour generator
is asymptotic. In cither case the contour generator is also a line of curvature. Since
it is also planar, the surface is locally a cylinder.

4. We also arrive at the cylinder restriction in the case of parallel surface contours,
given two forms of the principle of general position (that of viewpoint and of
contour generator placement on the surface). ‘The opacity restriction is also uscful,
given the olanarity and geodcsic restrictions, in understanding how an opaque
surface lics under a contour generator.

5. Surface markings on synthetic and biological objects and the edges of cast
shadows are often geodesic and planar. Gloss contours arc asymptotic and planar,
at lcast :n the case of orthographic projection and distant light sources. Hence if
the contour generator can be reconstructed as a 3-1) curve, the surface oricntation
along the curve can be computed subject to either the geodesic or asymptotic
interpretations.

6. Constraints on the intrinsic gcometry are also provided by surface contours even
if the contour generator is not well determined in space: Gloss contours,
highlights, and shading cdges tell us of the local Gaussian curvature in some cases.

antnbiis, casiihitlie.

In fact, surface
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2. CURRENT THEORIES OF SURFACE PERCEPTION

Surface perception is usually considered to be a process of reconstructing three-dimensional scenes from
two-dimensional images. The dimension that is missing in the image is the distance from the eye to points in
the environment. That dimension appcars to be recovered somehow and its recovery has often been taken as
the primary goal of surface perception. While controversy has arisen regarding the source of the distance
information (e.g., whether it is derived exclusively from the image or in part from previous experience) it
appears irrcfutible that we gain a sense of depth from a single monocular image, such as a commonplace
photograph. It would therefore scem natural to assume that the visual system internally expresses the
three-dimensionality in terms of perceived distance (at least, distance specified up to a scale factor).!

But a single image is not what is usually presented to the visual system, for we move through the
environment with both eyes open and the environment often contains objects engaged in independent
motion. This has lead some investigators to treat single images as special, and to expect that their
interpretation, distinguished as “picture perception”, is either some derivative of our ability to interpret the
dynamic environment [Gibson, 1971; Kennedy, 1974] or a learned skill of interpretation analogous to reading,
subject to cultural convention (c.g., [Arnheim, 1954]). Nonectheless, the visual system is often presented with
input that is cffectively a single image, due to various combinations of maonocular presentation, stationary
observer, and motionless or distant subjects. An cffectively single image also occurs with binacular vision at
distances where the sterco disparitics arc negligible and there is no relative motion. [t is reasonable to expect
that the visual system has developed means to derive uscful information about the environment in these
commonly occurring instarices.

The single image does not have a unique 3-D interpretation, for the projection that produces the image is a
many-to-onc mapping, and therefore does not have a unique inverse.? Regardless, we usually derive a
definite and accurate 3-D interpretation from a given image. So unless we choose to disregard this paradox,
we arc faced with cxplaining how we analyze a single image despite its ambiguity. The problem is to
understand the source of additional information that allows the unique interpretation to be chosen from the
infinity of possible interpretations.

As traditionally understood, there is a perceptual process that recovers distance from the retinal image (or
images). Alternatives to recovering distance, such as recovering surface orientation relative to the viewer
(slant) or some qualitiative description of surfuce shape, have also been investigated. But by and large,
distance is usually regarded as the primary consequence of the 3-1) interpretation, as evidenced in terms such
as "depth cucs”.

Scveral controversial issucs have emerged which have become focal points for the three major theories that

1. ‘The oricntation of patches of the visible surfaces is a complementan means for describing three-dimensional scenes.  Surface
oricntation will be discussed in section 4.

2 As we atiend to details in a seene. the lens accommodates to bring into focus points at different distances. We probe in depth as we
vary the accomodation. But the contribution of focus to our pereeplion of distance is weak [Ogle. 1962, p. 266; Graham. 1965, p. 519},
We have no other direct way 10 "exirict™ or "recover” 3-13 mformation from the single image.

3. “This was actually demonstrated. ¢ g.. by the well-known Ames room (lttelson, 1960].
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will be reviewed momentarily. These issucs are:

(a) the information content of the image. "This issuc is emphasized by Gibson. He
propases that complete 3-1) information is available in the images presented as one
maves through the environment with binocular vision. Similar claims are made
about the information carried by texture in the single image.

(b) the need for interpretation and assumptions in order to process that information.
This issuc is emphasized by the depth cue theory (duc largely w Helmholtz) which
proposcs that the image is interpreted on the basis of prior experience.

(c) the strategies for efficient processing. ‘Ihis is emphasized by the Praegnanz
theory (derived from the Gestaltists) which attributes the apparent immediacy of
the 3-D interpretation to the application of rules embedded in a representation
which is an analog of 3-D) space.

‘These three theories of surface perception will be discussed in the following.
2.1 Gibson’s theory

Gibson was the first to suggest that space perception is reducible to the perception of visual surfaces, and that
the fundamental sensations of space are the impressions of surface and cdge [Gibson, 1950a). These
statements contrasted with the notion of the time that space was the object of perception. While not specific
as to how surfaces might be represented, his hypothesis led to a shift in rescarch from attempting to
understand how the visual system might recover distance for all points in the visual ficld (as proposed by
Helmholtz [1925]) to studying how the various spatial propertics of the visible surfaces are perceived.

Gibson's theory of surface perception [1950a, 1950b, 1966] may be viewed as an hypothesis concerning the
information content of the visual input, and an hypothesis on how that information is extracted.

First, concerning the information content, it is claimed that there are "variables in the stimulation™
sufficient to specify "the essential properties or qualitics of a surface” including hardness, color, illumination,
siant, and distance [Gibson, 1950b]. For instance,

The distance at any point on a receding surface may be given by the relative density
of the texture. the finer the density the greater being the distance.

The slant of a surface 1o the line of regard at any point may be given by the rate of
inerease of elements at the corresponding point in the image. The direction of the
slant would correspond 1o the direction of the gradient [Gibson, 1950b).

Initially the theory stated that image texturce carries sufficient information to perceive these surface qualitites,
This conjecture was later dropped: instcad the dynamic and binocular images that occur when moving
through the cnvironment were expected to provide the complete 3-1 information. But the later conjecture is
also wrong. Our perception of visual motion from successive images and of depth from sterco pairs of images
must embody assumptions (¢!, [Ullman, 1979; Marr & Poggio, 1978)). Simply stated, the visual input does
not specify a unique 3-1) scene.

Little is said of contours in this theory.  In particular, the contours that comprise the boundary of an
objeet’s silhouctte are distrusted as a source of 3-1) information since a given image curve may arise from

- -
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infinitcly many 3-D) curves. And surface contours in gencral are considered only to the cxtent that they
comprise texture (c.g., the furrows of a plowed ficld).

1.ct us now discuss how 3-1) information is extracted according to this theory. Given the cvident richness
of visual information provided by natural sccnes, Gibson proposes the “generalized psychophysical
hypothesis” [Gibson, 1959}

... Jor every aspect or properly of the phenomenal world of an individual in contact
with his environment, however subile, there is a variable of the energy flux at his
receptors, however complex, with which the phenomenal property would correspond
ifa psychophysical experiment could be performed [p. 465).

The major implication of this hypothesis is that the 3-D information impinging on the retina nced only be
"registered” in a manner perhaps analogous to a touch sensor registering physical contact. There are two
points of contention here: whether there is, in fact, sufficient information in the (possibly dynamic) image to
specify a unigue 3-D reconstruction, and sccondly, whether the computational problems of extracting that
information are trivial. First, we consider the sufficiency issue.

Gibson predicted that there is a one-to-one correspondence between the subjective qualities (e.g., apparent
slant) of a perceived surface and the actual qualitics of the actual surface. Considerable effort has been spent
attempting to empirically verify this claim. The following conclusion was drawn in a review by Epstein and
Park [1964):

Concen.'ng the psychophysical hypothesis it can be said that Gibson has not proved
his case. The experimental data simply do not support the hypothesis of perfect
psychophysical correspondence. Nor does the evidence support the contention that
perception is "in contact with the environment,” that is, veridical, in cases of
psychophysical correspondence [p. 362).

Furthermore they quote Boring [1951):

Whart Gibson calls a "theory” is thus only a description of a correlation, a theory
which tells how but skimps on why ... eventually science must go deeper inlo the
means of correlation. must show in psychology why a gradient of texture produces a
perceived depth, not merely that it does [p. 362].

By and large, Gibson believes that the laws governing light insure that complete 3-1) information niust be
present in the image especially in the dynamic case of moving through the environment. The difficulty
expericnced by others in cmpirically demonstrating this fact has been attributed to the experimental
methodology which attempts to isolate the contributions of a particular source of 3-I) information, often
termed "reduction conditions”. Such cxperiments are criticized as not "ecological”, hence not necessarily

involving the processes that govern everyday visual perception:

But the research reviewed by Epstein and Park may not be appropriate to test
psychophysical hypotheses ... it seems unlikely that our perception of objects in space
is based on the processing of only one or a few cues, but rather depends on the
generation of a scale of space from which all references are made.  Since in the
natural environment all of the information about space is consistent, we probably
make use of it all in an integrated fashion, rather than separately, cue by cue. What
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’ seemis most unlikely is that cues are processed individually and then added together
{ in some manner [Haber & Hershenson, 1973, p. 302).

1t is interesting to observe that Gibson is essentially advocating a scheme for intcgrating multiple sources of
visual information although he docs not believe that vision involves “intermediate variables”, i.e.,
representations (scction 4). It should be noted, however, that the refusal o expect that the individual sources
of information (or “cues™) arc scparatcly analyzed is quite contrary to the viewpoint taken by this study.
: Incidentally, Haber and Hershenson's deduction (above) that the visual processing is not modular simply does
',;a not follow from the observation that the various cucs are consistent. The visual system may make use of the
i 3-Dinformation in an intcgrated fashion and also be modular: these two concepts are not mutually exclusive.

| This raises a final point. Gibson postulated that our perception is “immediate”. But the apparent
immediacy of visual perception -- the subjective case of sceing -- which Gibson cites belies the complexity of
the underlying processing. Immediacy suggests rapid computation, but cannot be taken as evidence for

i Tl

trivial, "dircct registration”. The complexity is recognized by attempting to formulate the problem that is
being solved, regardless of how cffortlessly we seem to solve it. In that light, it appears doubtful that the
1 various sources of information (e.g., stereo disparity, motion, texture gradients, shading) may be made use of
in an "integrated fashion”, as suggested. Deriving 3-1) structure from visual motion, stereopsis, shading, and
] texture gradients are all fundamentally different tasks -- the computations are based on different principles

and therefore differ fundamentally,
2.2 Depth cue theory

The single image has been understood to be ambiguous, in that infinitely many 3-1) scencs could have

produced any given image. Helmboltr. [1925] described the 3-1) interpretation of the image as a problem of
dectermining the radial distance from the viewer to the physical surface along every linc of sight. Thinking of
the problem in terms of distance, Helmholtz proposed that the visual system interprets depth cues by
"unconscious inference” drawing on previous visual experiences (c.f. [Helmholtz, 1925; lttelson, 1960,
1968]).1 Therefore familiarity with the visual world is central to this lhcory.2 Helmholtz is explicit about this
in the following:

3 Knowing the size of an object, a human being, for instance, we can estinmote the
; distance from us by means of the visual angle subtended, or what amouris 1o the
same thing, by means of the size of the image on the retina. ... Houses, trees, plants,
! efc., may be used for the same purpose, but they are less satisfactory, because, not
being so regular in size, such objects are sometimes responsible for bad mistakes
[Helmholtz, 1925, p. 283].

Scven depth cues in a single image are given in the following. These are commonly belicved to be the sources

L. Giregory [1973] draws an analogy between unconscious inference and the process of scientific hypothesis formation, wherein illusions
{ waould be attributed to inappropriate assumptions.

2. “the emphasis on Lhe role of prior experience appears to address a developmental isue. “The appraach adopied by this study is to first
determine the nature of the computations performed in surface pereeption, without concern for the nature-nuriure issue.
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of 3-1) in single images.

1. Occlusion, if correctly interpreted, constrains the relative depth in the locality of .
the occlusion. 'That is, the occluding cdge is nearer than that which is occluded.

Occlusion has been studied primarily in relation to subjective contours (e.g.,

[Coren, 1972; Stevens, 1976)).

2. Retinal size, from which absolute distance can be inferred, given that the object
is recognizable and its actual size is known. However, retinal size has been found
to be only a weak source of distance information [Rock & Mclermott, 1964]. The
relation between perceived physical size, retinal size, and perccived absolute
distance is somctimes callcd the size-distance invariance. Aticmpts to demonstrate
thi; 1i]nvariancc have produced equivocal results [Epstein & Landauer, 1969; Gogel,
1971).

3. Aerial perspective, a subtle cue known to artists that might also be used by the
visual system: the tendency for atmospheric haze to reduce contrast and to give a
blue tint to distant surfaces.! This cffect cannot be of general importance to
surface perception, particularly in cases of ncarby surfaces. And its contribution to
the impression of large distances is doubted by Gibson and Flock [1962].

4. The position of an object in the visual field. Since we usually sce objects that rest
on the ground, distance tends to vary monotonically with height in the visual ficld.
Evidence for our sensitivity to this has been found [Weinstein, 1957; Smith, 1958].
Also, the equidistance tendency: objects that are adjacent in the visual ficld tend to
appear at similar depth [Gogel, 1965).

5. Linear perspective, the projection of paraliel lincs on a surface into convergent
lines in an image; the notion of a vanishing point, and distortions of proximal
objects.  Usually the cffectivencss of perspective is measured by the subjective

slant of planar surfaces (c.g.. [Attncave & Frost, 1969)). however Jernigan and !
FEden [1976] have also demonstrated our ability to make accurate distance i
judgements on the basis of the perspective projection of a cube. '

6. Texture gradients, ¢.g., the systematic variation in projected texture (primarily
attributed to variations in distance). While usually quantified as the gradient of
texture density, other texture measures arc proposcd [Purdy, 1960].

7. Shading and shadows, illumination cffects that cause surfaces to appear in relief,
‘These cffects are well utilized by artists,

The last three cues are generally termed "depth cues” even though they will be shown to more naturally give
surface orientation. In fact, the hypothesis by Helmholtz that the visual system recovers distance information
for all points in the image has lead to theoretical difficulties, especially with regard to the information carricd
by shading and shadows. The addition of shading and shadows to a linc drawing strongly enhances the
three-dimensionality, therefore, within the Helmholw, framework, these illumination effects are depth cues.
But shading is more directly uscful as a source of information about surface oricntation than about depth. In
fact, Ittelson recognized the difficulty in considering shading as a depth cue:

1 Depth can abso be suggested by brightness, where nearer means brighter. If this is found to be actually contrast, and not brightness,
then 1t could be partially subsumed by acrial perspective.
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It seems intuitively obvious, and consistent with the evidence, that illumination,
color, and shading dv serve as cues 1o apparent depth. However, the exact manner in
which they function scems to be qualitatively different from all the other cues. In all
other cases, there is some impingment characteristic which, for a given object, varies
in some predictuble way with the distance of the object. ... 1t scems most reasonable
to consider these cues as contributing 1o the integration of a complex situation. The
vbserver organizes the tolal experience in such a way as 1o make the best “sense” out
of it, that is.] to make it correspond 10 the most highly probable condition [lttelson,
1960, p. 102].

Shading can be caused by variations in illumination, reflectivity, or surface orientation. When shading is due
solely to variations in surface oricntation (and not to illumination or reflectivity), the local surface oricntation
may be determined [Horn, 1975). With regard to cast shadows, their role in specifying surface shape has not
been examined (part 111, section 3.3.1).

In contrast to the many depth cues, few cues specific to surface oricntation have been proposed. Texture
gradients have been related to slant [Purdy, 1960}, as has foreshortening (usually described in terms of the
height/width ratio of a simple form such as an cllipse [Nelson & Bartley, 1956; Flock, 1964a)). Also, the
perspective projections of rectangles as trapezoids have been studied for cucs to slant [Freeman, 1966;
Braunstein & Payne, 1969; Olson, 1974]. One of the most discussed slant cucs is the image of a right trihedral
vertex, such as the corner of a cube. There is sufficient information preserved in its image to uniquely specify
the 3-D orientation of cach of its face. In the general case of the corner projecting as a "Y" configuration, the
slant o of each face of the vertex is related to the opposite obtuse angles a and 8 by:

sing = (cota cotB)!/ 2
The apparent three-dimensionality we see in drawings of objects with square corners (as commonly occur in
our "carpentered world™) might be attributed, in part, to the above relation.

In summary, the 3-D interpretation of depth cucs requires additional knowledge, which is usually
attributed to prior visual experiences. Depth cue theory cxpects some form of information processing (in
contrast to the direct perception proposed in Gibson’s theory), but does not consider how information from
distinct depth cucs might be integrated into a consistent "depth map”. That issuc is directly addressed by the
following theory.

2.3 Praegnanz theory

‘The Gestalt psychologists observed that we tend to choose visual interpretations that result in things appearing
to have minimum complexity. Koffka {1935} then proposed the principle of Praegnanz, that "psychological
organization will always be as good as the prevailing conditions allow”,  So rather than have to explain this
tendency as a side effect of certain visual processcs, it is madc integral to a theory of vision:

A Pracgnanz principle assumes a fteleological system (as Koffka [1935] explicitly
recognized) in which simplicity has the status of a final cause, or goal-state. It
assumes that the rules of perspective (or sume approximation thereto} are implicit in
an analog medium representing physical space, within which the representation of an
vbject moves toward a stable state characterized by figural goadness or minimum
complexity” |Auncave & Frost, 1969).
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‘This theory, although addressing vision in general, concentrates on simple line drawings where the visual
interpretation may vary from simply two-dimensional and lying parallel w the image planc to strongly
threc-dimensional (c.f., [Attncave & Frost, 1969]). By studying these simple images. they hope to uncover the
perceptual rules’ governing surface perception.

The Praegnanz theory directly addresses our ability to combine potentially contradictory information (a
point that Gibson dismisscs as irrelevant to real situations [Attncave, 1972 p. 284]). Rather than expect that
the visual system explicitly resolves this conflict (e.g., by disrcgarding the lesser reliable information), it is
proposed that all contributions meld together to reconstruct a 3-D modcl within a continuous “analog
medium”.2 That representation would preserve the information most essential for survival: the invariants
corresponding to the inherent propertics of an object as well as its spatial relation to the viewer. The internal

representation and its implicit "rules of formation and transformation™>

arc presumed to be in some way
complementary to the corresponding external objects and to the "rules of projection and transformation in
three-dimensional space” [Shepard, 1979]. Hence the Praegnanz theory, like Gibson’s, emphasizes the
importance of extracting invariant properties, e.g., of size and shape from the variable and shifting patterns of
light. To be cfficient in this task, the 3-D structure of an object is determined from its image by “rules of
formation” which reflect these invariant propertics -- the visual system has evolved to take advantage of the
constraints imposed by the nature of physical objects and the image-forming process.

Attneave and Frost [1969] take issuc with both Gibson and the depth cuc theory concerning interpreting

geometrical configurations in the image:

A cue theory, as we understand it, would have to assume the neural equivalent of a
massive table listing correspondences between particular combinations of angles, for
examples, and particular slants.  With all due allowance for approximation,
interpolation, etc., this would require a formidable number of associations. [With
respect to Gibson: | We have, in fact, employed a "higher-order stimulus variable”
[stant cxpressed by an trigonometric expression) ... as a rather successful basis for
predicting slant judgements. To suppose that the visual system likewise solves this
equation to absiract such a variable strains one’s credulity, the more so as one
considers in detail the operations involved in the transformation [p. 395].

Instcad, the analysis is belicved to be most economically implemented within the analog medium by
essentially pulling the image into three-dimensions where the particular 3-1) shape would be the result of the
simultancous application of various rules of interpretation; an analogy is drawn to the static cquilibrivm
achicved in a mcchanical structurc to which various forces are applied. Presumably the visual system
converges towards a stable perceptual solution by maximizing some mcasure of simplicity with a

1. The distinction between “cue” and “rule” -- if any distinction may be made -- lics in the manner by which the information is utilized.
Cues would be analy/ed separately and cxplicitly: rules would be implicit in some process that imposes them in an integrated manner.

2. The notion of "analog” in this regard has been recopnized 10 be problematic. Probably the intended distinction is that during a
perceptual process such as rigid rotation or the determination of a 3-1) shape, the stored values representing some peroeptual quantity
(such as slant, perhaps) would pass through an cffectively continuous range of vatues before settling on the final pereept.  This is
contrastcd (0 a process by which the final valuc is arrived at directly.

3. Lg. 10 interpret angles as right angles, shapes as symimetrical. lines as siraight and parallel, and to assumec that objects are in “gencral
pasition”, i.c.. stight changes in viewpoint do not qualitatively change the image [Shepard. 1979]. General position has been recognized
as imponant in studics of machine vision, c.g., [Waltz, 1975], and arises in the analysis of surface contours in part 11

PR EEN

PR EIRINERVE Sl 41

i e ke e«




Stevens -16- Current theories

"hill-climbing” procedure {Attncave, 1972). This measure would include homogeneity of angles, lengths, and
surface orientations in the modcl, coplanarity or cquidistance of components, simplicity of spatial
relationships, and goodness-of-match between the model and stored schemata [Attneave, 1972).

The analog medium would also serve object recognition by allowing the 3-D structure to be rigidly rotated
in order to bring the perceived structure from its initial spatial orientation (relative to the viewer) into some
oricntation more usecful for recognition. Experimental data showing the time to perform mental rotation to
vary linearly with the required angle of rotation has been interpreted as evidence for the visual system
performing continuous 3-D transformations {Shepard & Metzler, 1971]. Three-dimensional reconstructions
would be made from the image within this medium by the implicit application of "rules of formation”. Buta
set of rules has yet to be proposed that would be sufficient to account for our perceptions in natural situations,
not simply those involving geometrically simple and symmetric objects. Furthermore, explicit geometrical
analysis of the image is regarded as infcasible by the Praegnanz theory. Instead, the transformation from
image to three dimensions is the implicit consequence of some process that secks to minimize the complexity
of the percept. The thcory even proposes a particular mechanism, hill climbing, to perform the minimization,
But a computation characterized as a minimization has other equivalent descriptions -- the choice of
description is primarily a matter of convenience [Ullman, 1979).

The central hypothesis of the Praegnanz theory is probably not minimization, but the feasibility of
dctermining 3-D shape dircctly from images in general. By "directly” 1 mean computing a representation of
3-D shapes from a representation of the retinal image without the intermediate construction of a
represcntation of the visible surfaces. This intermediate level is proposed by Marcr [1977b] and Mair &
Nishihara [1978)]. Bricfly stated. there is too large a gap betwcen image and object to be bridged by a single
"stage” of processing, as it were. That is because features of an image (intensity cdges and gradients of
intensity, for instancc) are not casily related to volumetric, or object, features - in fact, the whole notion of
"object™ is difficult to define in terms of its image [Marr, 1977b). On the other hand, a surface represcntation
is feasibly constructed on the basis of image information since discontinuities and gradients in the image are
related to surface features (physical edges, and surface curvature). The susface description would then serve
as a natural basis for constructing a volumetric description.

The previous discussions of Gibson, depth cues, and Praegnanz have shown the prominent schools of
thought on surface perception. In the following section 1 shall briefly review the computational approach
introduced by Marr.
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3. COMPUTATIONAL ASPECTS OF VISION

From one point of vicw, vision provides the organism with uscful descriptions of the visible environment
[Marr, 1976; Marr & Poggio, 1977; Marr, 1977b]. Early in the course of visual processing the image itself is
described in terms of cdges, blobs and other intensity variations [Marr, 1976; Marr & Hildreth, 1979)].
Subsequently the visible surfaces in the scene are described in terms of distance, surface oricntation, and
apparcnt physical edges -- using information from the image description [Marr, 1977b]. And later 3-D shapes
are described in terms of volumetric primitives - using information from the surface description [Marr &
Nishihara, 1978].

We may then focus on either of two complementary aspects of vision: understanding the descriptions
themsclves (e.g., what are the primitives of the description?) and understanding the processes that construct
the descriptions.

Visual processes are most feasibly understood when approached at several levels of abstraction [Marr &
Poggio, 1977]. At first, a process is understood as an abstract computation -- as a method for applying a set of
constraints to a problem. Basic understanding of a visual process comes from recognizing the computational
problem that must be solved and determining the sct of constraints that allow its solution. More specific
understanding of the process comes from determining the algorithm that incorporates those constraints. At
the level of algorithm, one addresses such aspects as intermediate constructs (e.g., place tokens and virtual
lines [Marr, 1976; Stevens, 1978)), and computational operations that are biologically feasible [Ullman, 1979).
Finally, 10 understand the actual mechanisms that implement the algorithm involves neurophysiology.

Since much of this report concerns constraints, it is important to discuss some basic issucs concerning
them.

3.1 A discussion of constraints

The ambiguity of the image requires that its interpretation be additionally constrained. Stercopsis, motion,
shape-from-shading, shape-from-texture, and other processes must incorporate assumptions that further
constrain their respective problems. But actually, the degree of ambiguity facing a given visual process
depends on when it is tackled by the visual system. For cxample, the false-targets ambiguity in stercopsis does
not cxist if stercopsis is deferred until after the objects in cach of the two images have been recognized (apple
in the left image matches applc in right image, ctc.). Similarly, motion correspondence would be casicr if each
image were analyzed to the point of recognized objects prior to determining the correspondence between
frames (the rabbit in the first frame matches the rabbit in the sccond frame). However Julesz {1971] has
shown that stereopsis precedes the perception of objects, and Ternus [1926) demonstrated that motion
correspondence can be cstablished between simple clements (c.g.. edges and points) in successive images
without requiring objects recognition,

With regard to texture and surface contours, when are their analyses attempted? In determining that, we
fix the sort of information that is available to solve the associated information processing problems -- and
thereby determine the sort of constraints that must be applied. In particular, is surface shape described after
objects are recognized? If deferred until after objects are recognized then knowledge of the 3-1) shape could
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be brought to bear on interpreting the surface shape from a particular view of that object. On the other hand,
if performed prior to recognition, the only information that is available is the gcometry of the texture and
contours. What, in fact, is the carlics point at which the human visual system can feasibly solve this problem?

First, we know that some aspects of surface perception do not require object recognition. Random dot
stercograms, texture gradients, and various abstract art provide example in which surfaces are perceived
independent of any understanding of what object might be portraycd. Furthermore, it is infeasible to
attempt object recognition without having previously analyzed the image to the point of describing the visible
surfaces, in general [Marr, 1977b]. That is to say, surfaces are feasibly described prior to object recognition (as
easily demonstrated), and object recognition without previously describing their visible surfaces is probably
infeasible in general,

But do all processes of surface perception strictly precede object recognition? That would imply that
recognition could not effect the perceived surface shape. This is not the case, as has been demonstrated by the
Gestalt completion tests [Strect, 1931]. Object recognition does contribute to surface perception, however the
relative importance of this contribution is not known.

What sort of constraint is provided us for solving the surface shape from texture and surface contours?
Primarily they will be geometrical. To illustrate, consider planarity, i.e., restricting a 3-D curve which lies
across a surface to be planar. The shape of the curve is more feasibly deduced from its projection in the image
if it is planar than if it has torsion (twists in space). Hence planarity may be considered as a constraint. But is
planarity a reasonable property to assume? How often are curves on surfaces (such as cracks, scratches,
pigmentation markings) actually planar? Probably few cu:ves are globally planar, but many can be
reasonably approximated as planar for sizcabic portions of their length. We might assume that segments of a
curve are planar (but certain criteria are needed to delimit the cxtent of a curve that may be treated as planar).

It follows that constraints that need be valid only locally are more useful to the visual system, as those have
a higher likelihood of be valid. A further advantage for local contraint is apparent when actual algorithms are
considered that would apply the constraint: If a Jocal constraint is sufficient to solve the problem, then the
algorithm can be local -- the computation may be performed wholly on the basis of input from some
prescribed region of the imagc.l l.ocal algorithms provide an advantage to a biological implementation, both
in terms of actual ncural conncctivity and simplicity of design {Ullman, 1979]). Finally, it would be
advantagcous to usc the results of local surface analysis to constrain subscqucent global analysis.

But local constraints whose validity cannot be verificd might result in global inconsistency. Do we check
for global consistency? The persistent bafflement that we experience in the artwork of M.C. Escher suggests
that global consistency testing is not incorporated in our visual system. '

Nonethcless, visual analysis based on constraints that arc not invariably valid must deal with potentially
inconsistent information. The inconsistency might be of the sort just mentioned (i.c., a locally consistent but

1. That region nced not be fixed, c.g.. in 1erms of visual angle: The region of visual input may be determined by some local measures in

the image. An example of this is given by the description of local parallelism in dot patterns [Stevens, 1978). The neighborhood size is
deternuncd by the local dot density so that a rclatively constant number of dots is included. The computation is therefore scale
independent (over at least an order of magnitude range of dot density).
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globally impossible 3-D configuration) or inconsistency between the independent solutions of cither surface
orientation or distance provided by indcpendent proceses.

This study will not consider the problem of intcgrating multiple sources of information. The
computational problems that arisc are probably best studied after the processes that deliver the information
are better understood.

One final introductory point regarding constraints should be made: While it is important to understand
the particular constraints that are brought to bear in solving a given problem in vision, understanding the
constraints alone does not constitute a theory. It is also necessary to understand how the constraints are
applied to the visual input -- i.e., the computational method must be determined. This study, however, only
attempts to understand some of the constraints themselves.

3.2 Constraints or invariants?

There is widespread agreement that the visual system must utilize "invariants” in the image, where the term
“invariant” is intended in its mathematical sense, i.c., when some property or relation is unchanged by a given
transformation (see e.g., [Gibson, 1971; Shepard, 1979]). The use of the term stems from the expectation that,
in order to "recover” three dimensions, there must be 3-D information prescrved by the projection
transformation that leads from three to two dimensions. How do these invariants differ from the constraints
that [ just discussed? This will be examined in the following.

To postulate that the visual system is sensitive to invariant relations is appealing, however one point will be
stressed in the following: few propertics in the 3-D scene are in fact invariant over the perspective projection
onto the image. Of those that are, few have the necessary feature of having an invariant inverse. That is to
say, the presence of the relation or property in the image does not necessarily imply the corresponding scene
property. For instance, simply because two edges are parallel in the image, their 3-D counterparts needn’t be
parallel.

We shall see that there is unlikely a sufficient sct of invariants with invariant inverses on which to base
rules for vision. On the other hand, there are geometrical relations in the image that do have this useful
feature, but not invariably. The following is not intended to pan the term "invariant”, but to emphasize the
nccessity for assuming physical propertics in order to take advantage of the constraint afforded by these
image propertics and relations that generally, but not invariably, hold.

First of all, few spatial rclations and properties are invariant over projection. Angles and lengths are not
preserved, therefore the important properties of perpendicularity, size, and extrema of length are not
invariant. Neither are points of maximum or minimum curvature on a curve. Due to obscuration, ncither the
continuity of a curve and nor its closure are necessarily preserved. Some invariant properties and relations

are:

collinearity: If two physical edges arc cxactly collincar, they will appear so in the
image. (This forms the basis for the Gesialt rule of "good continuation™ across an

obscuration.)
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cross ratio: 1€ A, B, C. and 1) are four distinct collincar 3-1) points, then the
following ratio is preserved in any perspective projection: the quotient  of the
ratio in which C divides AB and the ratio in which 1) divides AB.

inflection points on planar curves: An inflcction point (of curvature) along a planar
curve is preserved in the orthographic image of that curve.

parallelism: Parallel 3-D edges appear (in orthographic projcction only) as parallel
edges in the image.

proximity: 1f two 3-D points are proximate, their projections will be proximate in
the image.

smoothness: 1f a physical edge is smooth, its projection will be smooth, when
visible.

spatial order. The order of places along a straight linc in 3-D is preserved in the
image of the places along the image of the line.

straightness: If a 3-D edge is straight, it will appear so in the image.

For most of the above propertics and relations their inverse is not invariant, i.c., the presence of the
property in the image does not guarantee the presence of that property in 3-D. Consider the invariant
relation of proximity: if two 3-D points are proximate, they invariably appear so in the image. The inverse is
not guaranteed -- two adjacent points in an image do not always correspond to adjacent points in 3-D.! The
fact that a given relation or property is invariant does not guarantee that it would be uscful for visual
processing: the inverse also must be invariant or at least generally2 valid: invariance alone is not sufficient.

So let us turn the problem around and ask what propertics or rclations, when present in an image, are
necessarily present in the 3-D scene. Consider first the invariances whose inverses are always valid:

cross ratio, inflection points on planar curves, and spatial order.
To these we add the invariances for which the inverses are often valid:
collinearity, parallelism, proximity, smoothness, and straightness.

To those we add gcometrical properties that, when present in the image, imply the corresponding 3-D
property. But note that these properties are not invariant over projection.

perpendicularity:  1If two image contours are perpendicular, they are probably
perpendicular in three dimensions.

1. 1owever. the inverse is often true, as may be demonstrated by selecting a closely-spaced pair of points at random on a photograph of
a 3-D scene. ‘The points usually correspond to physical locations that are nearby in space. This is because, by and large. the world is
comprised of smooth surfaces. This relation, phased in terms of continuity. forms one of the basic constraints on stercopsis Marr &
Poggio, 1976).

2. This is the issue of “ccological validity” discusscd by Gibson, Brunswick, and others (c.[.. [Gibson, 1950a; Pestman & Tolman, 1959]).
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occlusion: If the termination of a contour lies along another contour, that
termination might be duc to occlusion, and, if so, implics an ordinal relation
between the distances to the two corresponding physical edges.

regularity: Various mcasures of regularity (c.g., regularity of spacing, density,
length, or sizc) when present in the image reflect 3-D regularity and do not result
from a coincidental viewpoint of an irregular surface. Regularity will be discussed
further in part I1.

symmetry: If a symmetrical configuration is present in the image, it is almost
always due to somc symmetrical 3-D configuration, and not coincidental.
Symmetry will be discussed further in part 111

The above propertics, while useful to the visual system as sources of 3-D information, are not strictly
invariant.

The basic point regarding these relations is that, to be applied to vision, there is necessarily an assumption
that their inverses are invariant. Consider the parallelism relation. While parallel edges in the image do not
invariably correspond to parallel 3-D edges, in order for the parallelism to be mislcading (i.e, for the 3-D
edges to not be parallel) there must be a particular arrangement between the viewer and the 3-D edges. If the
a priori probability is low for this to occur, then image parallelism would be useful for inferring 3-D structure.
There remains the problem of what to do when the situation is misleading, however. With independent
information which reveals this fact (e.g., from stercopsis or motion) the analysis might be recognized as
incorrect. Clearly, without independcent information, the analysis would be incorrect and a "visual illusion"
would result.

3.3 One representation, many contributing processes

We will be examining the constraints on the analysis of texture and of surface contours, but in so doing, we
implicitly assume that these analyzes arc distinct. Is there a single perceptual process, or is the percept the
conscquence of relatively independent contributions that are combined in some manner? Introspection has
often suggested the former (sce section 2.1); computational arguments now suggest the latter. This question
will be discussed a bit further, since it is important to the rest of the work.

If onc introspects on the percept. i.e., the three-dimensionality, there is a unity or homogencity that some
investigators find difficult to cxplain by separately analyzed cucs (c.g.. Haber, sce scction 2.1). Consider the
following progression: observe a scene binocularly as you walk about. ‘Then stand still and stare. The absence
of motion subtly diminishes thc three-dimensionality. Then closc one eye (no steropsis) and the sense of
depth is further diminished. Next, substitute a photograph taken from the same vantage point (no
accommodation), then an architectural rendering (contours, shading, but no texture), then finally a line
drawning (no shading). Obscrve that cach successive step weakens the three-dimensionality. This has been
interpreted as evidence for a single monolithic process whose performance is progressively degraded under
these "reduction conditions”.

The subjective homogencity may also be explained by there being a common surface representation that is
developed by relatively independent perceptual processes. The 3-1) impression common to the above
situations stems from the visual system combining the information from various sources (stereopsis, texture
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gradients, clc.) into a common representation, from which subsequent analysis and spatial judgments are
made. But why should cach source be separately processed? There are computational arguments for
expecting a modular design [Marr, 1976).

A natural, modular decomposition of visual processing is suggested by the distinct computational problems
that must be solved. This is becausc the sources of information are fundamentally distinct: for instance,

occlusion is very different from shading both in terms of the nature of the information and the assumptions
;v"' that must be made to utilize that information. It is reasonable to treat occlusion as distinct from shading and
to expect that any implementation, biological or otherwise, will reflect that distinction -~ there would be no
' advantage in having interactions between these processes except after their computations are performed and ‘
it the results are to be combined in some consistent manner. ?
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4. REPRESENTING VISIBLE SURFACES

‘This section reviews the framework for describing visible surfaces and  3-D shapes proposed by Marr and
Nishihara [1978] and gives a computational argument for a specific form in which to represent surface

orientation.
4.1 The 2 1/2-D Sketch

Ultimately, the visual system constructs descriptions of 3-I) shapes for such purposes as recognition and
manipulation. Some of these descriptions are object-centered, i.c., independent of the viewpoint. But an
earlier -- and probably prerequisite -- visual description is of the shape and arrangement of surfaces relative to
the viewer. This description is viewer-centered. Surfaces arc described in terms of surface orientation,
distance, and the contours along which surface orientation or distance are discontinuous. Physical boundaries
of surfaces arc made cxplicit, but not necessarily those of 3-D objects (whose boundarics arc not so easily
defined). Hence two distinct representations are proposed: the surface description, called the 2 %%-D Sketch!
and the 3-I) shape description, called the 3-D Model {Marr & Nishihara, 1978).

The 2 '.-1) Sketch is envisioned as a ficld of thousands of individual primitive descriptors, each describing
the surface oricntation or distance at the associated point in the visual ficld. It would allow information about
surfaces derived from stereopsis. motion, shading, and other analyses to be integrated and maintained in a
consistent manner. ‘The information in the sketch would then be accessible to later processes, e.g., those that
derive volumctric des. riptions such as the 3-1) Model.

Each representation should be of a form which is casily computed by carly visual processes, and also of a
form that is useful for the later processes that access the representation. The 2 %2-D Sketch describes surfaces
locally and relative to the given viewpoint -- this is a form which is naturally delivered from the image and
which may be dircctly interpreted by subscquent processes. On the other hand, the 3-1 Modcl describes 3-1D
shapes relative to their prominent axes of clongation (for instance) hence largely independent of viewpoint -
this is a form which is useful for recognition.

We now focus on representing visible surfaces within the 2 %2-1) Sketch. This representation probably

makes both distance and surface orientation explicit. This would serve three purposcs:

Fach type of information, being cxplicit. would be immediately available for
cfficient usc by later visual processes.

It makes feasible the independent acquisition of cach type of information by
processcs which, by their nature, provide information in one type or the other.

At times information of onc type may be more preciscly known than the other.
Since they would be represented independently, the more precise information
would not be degraded by the less precise.

1 So named as t represents 3-D mformation, but only of the surfaces in the scene that are visible to the viewer.
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Surface orientation and distance are roughly equivalent in the following scnse:  Surface orientation is
computable from distance by taking the gradient of distance; the relative distance of two points may be
computed by ntegrating surfuce orientation along a path connccting those points, ‘The visual systeni
probably takcs advantage of this equivalence and cxplicitly computes surface orientation from distance in one
direction, and distance from surface oricntation in the other.

We may illustrate one direction by means of stercopsis, which provides distance information in the form of
sterco disparity. But we also perceive surface orientation in the random-dot stereogram. It seems most
reasonable to expect that the apparent surface orientation stems from analyzing the variations in perceived
depth, e.g.. by the gradient of the depth map. Another cxample of our deriving surface orientation from
distance is given by figure 1. In this figure occlusion is the only source of 3-D information -- hence most
likely a depth map is computed first, and from this we subsequently infer slant. Note that the apparent slant
varies with the degree to which successive rows are obsured -- the slant varies according to whether the figure
is interprcted as three coins lying on a table, three coins standing on end, or as three billiard balls. In each
case the slant is a conscquence of the depth interpretation.

In the other direction, distance is derived from surface orientation. Figure 2, which is borrowed from part
I of this report, suggests an undulating surface seen in orthographic projection. One may argue that surface
oricntation is more dircctly analyzable than distance in this case (part II1, section 1.1). On this basis, 1 suggest
that the visual system first computes a surface orientation description from the contours, and subsequently
computes a depth map from that description. The following psychological observation also supports this
clam: the impression of depth is less definite than the impreosion of surface orientation. If figure 2 were
analyzed in terms of distance, one would then have to cxplain how surface oricntation would be computed
from distance with better precision in orientation than in distance. Finally, the "depth reversals” of the
familiar Necker cube (see [Gregory, 1970]) is another example of distance being derived from surface
oricntation, for the cube is usually drawn in orthographic projection. There is only surface orientation
information preserved in the orthographic projection of the cube.

In light of these examples of our deriving distance from surface orientation, and vice versa, it scems likely
that representations o both surface orientation and distance exist and that they arc probably coupled. We
now will turn to the probiem of representing surface orientation.

4.2 Surface orientation

The most direct approach for expressing surface orientation is in terms of the normal to the surface at a point.
However there are several ways to describe the surface normal, as will be demonstrated, so criteria will be
introduced for judging the likclihood that a given form of surface orientation representation is incorporated in
the human visual system. First, we will consider various natural forms for representing surface orientation,
then discuss onc form that meets thesc criteria.

4.2.1 Slant, tilt, and gradient space
Since the description of local surface orientation will be relative to a particular line of sight. it is sufficient to
treat the optical gcometry locally as a spherical projection (the radius at cach point on the sphere defines a
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FFigure 1. Surface slant can be inferred from distance information: ‘e only source of distance information
above is occluston, for the itlustration is in orthographic projection (the circles are equal-sized). The circular
figures appear 1o lic on some supporting plane, the st of which varies as the figures are interpreted as three
coins lying on a table, three coins standing on end, or as three bitliard balls. The slant is a function of the
degree to which successive figures are occluded. and the radial distance assumed to separate the figures.




Figure 2. Distance can be inferred from surface orientation: The undulating surface is suggested simply by
translated sine waves. In the absence of occlusion and other depth cucs. the visual system probably interprets
the local surface orientation, and from this derives a sense of depth.  Note that just as the local surface
orientation is ambiguous in orthographic projection, the depth may be seen to reverse (especially along the
diagonal strip where the contours are closely spaced).

Stevens -26- Representing visible surfaces

—————




Stevens -27- Representing visible surfaces

particular linc of sight). The image in the immediate vicinity of a point on the sphere would project normally
onto the tangent plane at that point. Since the image plane is always perpendicular to the line of sight, the
prajection is locally orthographic. It is important to recognize that the "image planc™ notion is an
approximation which is valid only locally.

Now we imposc a local Cartesian coordinate system on the image plane in order to address ncarby image
points. We will label the axes of the local system as x and y, remembering that they measure angular
displacements about a given image point. Then distance z along the line of sight to points on a surface is
given by z = f(x, y). The surface normal N can be expressed as grad f:

N=fi+fj-k
where fx and f; are the first partial derivatives with respect to x and y. The orthographic projection of N is the
two-dimensional vector n:
n=fii+ fj
Iocal surface orientation therefore has two degrecs of freedom, and the pair (f;, fy) would constitute one form
of description. That is, surface orientation can be expressed by the rate of change of radial distance in two
perpendicular image dircctions (but the orientation of that coordinate system is arbitrary).

The rate of change of radial distance in an arbitrary image orientation a is given by the directional

derivative in the direction a, equivalently the dot product of the unit radial vector of that direction and grad f:
dz/dr = fx cos a + fy sin a. )

The image orientation in which this rate is maximized (actually maximum in one direction and minimum in
the opposite direction) is given by differentiating (1) with respect to a and equating the result to zero:

fisina + fycosa =0
which gives

a =tan’! (fi/f:) = 7.
This oricntation r indicates the orientation in which radial distance to the surface changes most rapidly. That
orientation will be termed lt, where 0 € 7 < #. Figure 3 illustrates surface tilt by an cllipse, the familiar
image of a circular disk in orthographic projection. The orientation of the minor axis coincides with the tilt
orientation. Note that specifying only the orientation (0 € 7 < o) and not the direction (0 £ 7 < 2n) of
surface tilt allows two surface orientations that differ by a reflection about the image planc. This is precisely
the amount to which surface oricntation can be specified in orthographic projection in general (section 4.2.3).

The slant angle, measured between the line of sight and the normal, is given by:

o = tan’l (12 + £)Y2
In short, tilt specifics “which way™ and slant specifies "how much™.

‘The tilt orientation was scen Lo correspond to the orientation of the gradient of distance from the viewer.

‘The orientation in which the distance is locally constant is given by setting (1) to zero, which gives
a = an’! (f/f) + w/2
that is,
=7+ a/d
Thus distance to nearby surface points varics most rapidly in the tilt oricntation and is locally constant along
the perpendicular orientation. Hence a local Cartesian coordinate system with the y-axis aligned with 7
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Figure 3. The two degrees of freedom of local surface orientation can be described as the coordinates of a
point in gradicnt space, cither as Cartesian coordinates (p,g) or as polar courdinates (tane, r). 'The angle o
between the line of regard is termed the angle of surface slant, and the orientation 7 is termed surface tilt. \f v
specifies only the orientation (0 < 7 < #) and not the particular direction of surface tilt, then the surface
orientation is determined only up to a reversal about the image plane. This ambiguity matches the degree to
which surface oricntation can be determined from orthographic projection. ‘The slant ambiguity is
demonstrated above, with the two interpretations indicated with 3-D arrows. 'To obscerve the two
interpretations, alternately cover onc of the arrows.
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provides a convenient way for describing variations in distance in the vicinity of a point on a surface. This
will have application in the analysis of texture gradients {part II),

It is common to refer to £ and fy as p and q. Then the pair (p.q) may be thought of as the Cartesian
coordinates of a point on a planc called gradient space.l The surface oricntation at any point on an smooth
surface maps to some point in gradient space. The origin of gradient space corresponds to a surface is parallel
to the image planc (zero slant angle).

A natural alternative to addressing a point in Cartesian coordinates is to use polar coordinates. The
straightforward conversion gives us (tang,r) where

r = tan’ (q/p) )}

tang = (p2 + qz)m.

From this we see that the two degrees of freedom of surface orientation can be expressed as either (p,q) or
(tano,r). However, the representatior: of surfaces whose slant angle approaches #/2 would require
approximation with both of these forms. (All surface orientations with slant of #/2 correspond in gradient
space to points infinitely far from the origin.) This suggests a sccond polar form for the primitive descriptor
of surface orientation: the pair (o,7) where the slant angle, and not its tangent is used. This form will be
referred to as slant-tilt. Auneave [1972] proposes a third polar form for representing local surface orientation
in terms of small cllipses whose orientation corresponds to surfacc tilt 7, and whose ratio of minor to major
axes corresponds to the cosine of the slant angle. That form would be equivalent to (cose, 7).

To summarize, the two degrees of freedom of surface orientation are naturally described in Cartesian form

as (p.q). or in various polar forms:

(tano,r)

(0.7)

(cosa,7).
We now consider some criteria for judging the likclihood that a given form would be uscful for describing
surfacc oricntation within the 2 %-D sketch. 1 will usc these criteria to arguc that a polar form of surface
oricntation is more likely incorporated in the human visual system than a Cartesian form. But the criteria
distinguish primarily between Cartesian and polar forms. They do not distinguish among the various polar
forms just listed. The representation of slant was studicd experimentally, and it is concluded that slant is
probably represented directly in terms of slant angle. ‘That is to say, the representation is probably equivalent

to (o,1).

4.2.2 Criteria for a representation of surface orientation
The criteria are given in the following, and discussed subsequently. The first two arc the most basic:

1. Representing local surface orientation by the pair (p.q) has been usefu! in machine vision (c.l. [liuffman, 1971; Mackworth, 1973;
Horn, 1975; Woodham, 1977]). Gradient space is convenient for applying constraints imposed by object geometry and by reflectance
propertics A tymical use of the space is to represent the allowable range of surface orientations that are consistent with a given
illumanation situation - When the surface reflectance propertics and the position of the light source arc knows, then the locus of possible
surface oricntations that might give nse 1o a particular image intensity can be neatly characterized as a curve in gradient space.
Successive application of constraints may further restrict the solution until a small arc, or perhaps a point in gradient space remaing
[Woodham, 1977).
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CI: Is residual ambiguity implicit in this represcntation? That is, does the
ambiguity in the primitive descriptor of the representation reflect the extent to
which that information can be known locally?

C2: Is the form compatable with that in which the information can be inferred
from the image? In particular, can cach component of the primitive descriptor be
computed separately?

While it is parsimonious to store information in the same form as it is computed, that form of representation
must also be useful to subsequent processes that access the information. So:

C3: Are discontinuities in surface orientation efficiently derived from this form?

C4: Can distance be computed from this form efficiently?

Finally, two phenomena are associated with surface perception that probably bear on the form of the
representation of surface oricntation:

CS: There is often a disparity in precision between surface slant and tilt
judgements. Disrcgarding the cause of this disparity, does the given form of
representation allow slant and tilt to be represented with differing precision?

C6: Can reversals in surface orientation that are associated with depth reversals be
attributed to this form of representation?

4.2.3 Residua) ambiguity and reversals (criteria C1 and C6)

Surface orientation can be dctermined in orthographic projection only up to a reflection about the image
planc, which I shall term a slant reversal.! The ambiguity is illustrated in figurec 3. How docs the visual
system handle this ambiguity? One possiblity is that, in fact, the ambiguity docs not get carricd beyond the
analysis of surface oricntation. That is to say, the ambiguity is resolved immediately by some means, and so at
any one instant only onc of the two slant interpretations is taken. The other possibility is that surface
oricntation is first determined only up to a slant reflection, and that the ambiguity is preserved until it can
later be resolved by some subsequent process. This alternative seems more feasible, and is consonant with the
hypothesis that the visual system follows the principle of least commitment [Marr, 1976b).

A natural means for preserving the slant ambiguity is by representing surface orientation in a polar form
where 7 specifies only tilt orientation (0 < 7 < o) and not tilt direction (0 < 7 < 27). Hence surface
oricntation is made explicit only up up to a slant reflection. Subjective depth reversals may then be explained
in terms of the slant ambiguity in the surface orientation representation, not to reversals in represented depth,
per se. Distance may be computed up to a constant from surface orientation, but surface orientation can be
determined in orthographic projection only up to a slant reversal. Therefore distance can be computed from
this information only up to a sign.

In contrast, a Cartesian form is not as naturally suited to the task of keeping slant ambiguity implicit. The

1. Figures projected in perspective also reverse, whercupon the figure looks distorted [Gregory, 1970).
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Stevens

form (p. q) overspecifics the surface orientation, but if we take the absolute valucs of each component (|pl, Iql)
now there is four-way ambiguity. Since reversals in slant are constrained to cither quadrants 1 and 3 or
quadrants 2 and 4; onc more bit of information is nceded which specifics which pair of quadrants are
involved. A Cartesian form can be made to specify slant only up to a reversal, but only explicitly.

4.2.4 Computing the primitive descriptor (Criteria C2 and C5)

Criterion C2 states that the form of the representation should match the form in which the information can be
naturally computed. The polar form of represcntation allows a decomposition of the problem of computing
surface orientation into two distinct subproblems: determining the orientation in which the surface tilts, and
the amount of slant. This decomposition is valuable, for different techniques exist for determining these two
quantities. Also, the computation would be robust, for cues to tilt might be present even when the magnitude
of slant cunnot be determined 1o any precision. On the other hand, the Cartesian form does not as readily
decompose into distinct computations of its two components. In short, the problem of computing surface
oricntation is naturally solved by determining "which way" and “how much™ and a polar form is better suited
to that task.

Critcrion C5 addresses the problem of accounting for the difference in precision with which two aspects of
local surface orientation are judged, the slant, or how much the surface orientation differs from the image
plane, and i1, the orientation in which the surface normal faces. Slant is often significantly underestimated
("regression to the frontal plane™) in monocular and binocular presentation of cither perspective and
orthographic projcclions.1 Furthermore, the perccived slant is strongly affected by the length of presentation
time [Smith, 1965). Apparent slant may cven vanish under prolonged obscrvation (this may be observed in
figure 2). In marked contrast, judgements of surface tilt are usually more precise, stable, and accurate
(appendix A). So although the slant of a surfacec may or may not be known with precision, the orientation in
which it is slanted is usually obvious.

Discussion of the imprecision in judging slant ("regression to the frontal plane”, large variance, or
U-shaped effect) has usually centered on explaining the effect, e.g., as a consequence of a competing tendency
to perceive the surface as lying in the frontal planc [Attncave & Frost, 1969]. Of importance to this study is
not the cause of the imprecision, but the fact that the imprecision in slant, when present, is not necessarily
accompanied with imprecision in tilt.

A polar form would allow the independent computation of tilt and slant. In part 11, for instance, we will
discuss methods for performing these two computations from texture. The methods for computing tilt are
fundamentally different than those for computing slant, and therefore are expected to provide solutions with
differing precision. The differing precision is preserved in polar form,

Onc might arguc that surface oricntation is. in fact, represented in Cartesian form and therfore the

1. For cvidence of undercstimation of slant judgments from texture gradients see [Gibson, 1950b: Clark, Smith, & Rabe, 1956; Bergman

& Gibson, 1959; Purdy. 1960: Kraft & Winnick. 1967]: in the case of rectangles projected as trapesoids sce [Ilock, 1965; Flack, ef. al,
1967; Kaiser. 1967; Olson, 1974)  Underestimation of slant in onthographic projections is demonstrated in [Atincave & I'rost, 1969;
Atincave. 1972} ‘The underestimation may occur cven with binocular presentation (Smith, 1965: Kaiser, 1967: Youngs, 1976]. (Note that
under cxccllent binocular viewing conditions the underestimation is not sigmlicant. as shown in appendix 1 and [Olson, 1974).)
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cxperimental design unnaturally imposcs slant and tilt judgments on that rcprcscntmion.] By this argument,
the differing precision in slant and tilt may be an artifact of the experiment. However this argument does not
cxplain the following. The variance and underestimation in slant is decpendent on the quality of the visual
input: With orthographic projection, the slant judgments are poor and variable while the tilt judgments are
more accurate and less variable. And yet, under excellent binocular viewing, both slant and tilt can be judged
with precision and accuracy. A Cartesian form is not well suited to the task of simultaneously representing
surface orientation known to precision in tilt but imprecisely in slant. But with a polar form, imprecise slant
can be represented simultaneously with precise tilt.

4.2.5 Discontinuities (Critcrion C3)

A representation of surface orientation would be useful for detecting discontinuities in surface orientation.
Some evidence for surface oricntation discontinuities are readily extracted by local operators designed
specifically to operate on a symbolic description of the image (such as the Primal Sketch [Marr, 1976b]). For
example, a discontinuity in tangent along a contour is evidence for a discontinuity in surface orientation, since
that would be the most common cause for a contour to remain continuous but suddenly change direction
(especially when several such discontinuitics align [Marr, personal communication)).

Other evidence for surface oricntation discontinuities are not so directly evident in the image, but may be
detected after local surface orientation is computed (figure 5). As these discontinutities are more subtle, it
would be economical to defer their detection until the 2 %4-D Sketch rather than attempt their detection
dircctly from the imace.

Consider the situation where surface orientation is known more precisely in tilt than in slant. This

introduces the point of Criterion C3. The detection of a discontinuity would then decompose into two
subproblems: finding discontinuitics in tilt independent of those in slant. Then the computation becomes
straightforward: rather than compute some difference measure that involves both components of surface
orientation, the discontinuity would be detected by independent comparisons of slant components and of tilt
components. Then a small difference in the tilt components would be significant cvidence if the tilt were
known with prccision.2
4.2.6 Distance from surface orientation (Criterion C4)
Distance can be computed from surface orientation, as mentioned. Since surface orientation is the derivative
of distance, the difference in radial distance between two points on a smooth surface can be computed up to a
constant by integrating surfacc oricntation along a path between the two image points. This computation is
straightforward when surface oricntation is represented by the Cartesian coordinates (p.q) of Gradient space,
for those coordinates are the partial derivatives of radial distance with respect to the image axes.

1. If. as is postulated, the visual system represents surface orientation in a polar form, it would be unnatural to judging the components
of surface orientation projecied along two orthogonal image axes {c.g.. horizontal and vertical).

2. “The detection of discontinuities n surface tilt then closely resembies the problem of detecting discontinuities in paraliclism in an
image [Stevens, 1978]. A texture conwisting of locally paralic! edges can be represenied by a field of short oriented clements (virtual lines)
which arc everywhere locally oricnied in the same manner. Analogously, the 2 172-1) Sketch of a smooth surface would have locally
paralicl tilt components.
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Figurc 4. A discontinuity in surface orientation is usuall

not necessarily. Other evidence for a discontinuity in surface orientation would be an abrupt change in the
slope of continuous image contours. The discontinuity in tangent is strong evidence, since that would be the
most common cause for a contour to remain continuous but suddenly change dircection, especially when
several such discontinuitics align. Such evidence can be detected by simple local operators which only signal

y accompanicd by a contrast cdge in the image, but

the presence of a discontinuity without solving the surface orientation on cither side of the discontinuity.




Stevens -34- Representing visible surfaces

-
2, 4 ey

i~ o

Figure 5. Some discontinuitics in surface oricntation are probably best detected after the local surface
oricntation is solved. In the above cxample, the discontinuity is not cvidenced by contrast edges or
discontinuitics in tangent to contours, but only by a local measure of texture whose value is proportional to
the slant (discussed in part 1), "The detection of discontinuities would be performed cconomically if deferred
until a representation of the local surface orientation is developed. Then discontinuities could be found by
cxamining the representation regardless of the source of the information (c.g.. stercopsis, motion, texture
gradicnts). (Note that this and subsequent figures depicting texture are drawn somewhat schematically with
cllipses. The discontinuity effect occurs with more natural textures, as well.)
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The discussion thus far has favored a polar form for representing local surface orientation, hence it is
important to ask whether distance is feasibly computed from a polar form. That computation can be
performed by a summation along the path between the two points in question, If the orientation of the path
between those points is §, and the surface orientation of a nearby point along that path is (o,7), then the
contribution to the summation at that point would be

| tano [cos(r-8)] |.

Since surface orientation can be known only up to a slant reversal in orthographic projection, scaled
distance can be computed only up to a sign. Hence the computation of distance information docs not have to
wait until the surface oricntation ambiguity is resolved -- the distance can be computed up to a sign, i.e., to the
same specificity to which surface orientation can be known locally. Then other knowledge can cither specify
the sign and simultaneously the slant direction is resolved, or the slant direction can be determined hence the
direction in which distance increases is resolved.

4.2.7 Representing slant

The form in which slant is represented has not been discussed. The range of slants from 0 to 90 degrees is
assumed o be represented within the visual system as a set of n resolvable values. That is to say, n
distinguishable slants are represented. For any n, there is a grain of resolution that corresponds to an
uncertainty in slant. Three natural forms for representing slant would be to store the slant angle o directly, or
cither tane or cose. The tangent of the slant angle is suggested, for (a) it is the straightforward polar
component taken from gradient space hence the computation of distance from surface orientation would be
simplified (scction 4.2.6), and (b) a normalized texture gradient provides surface slant directly in that form
(part 11, scction 4). The cosine form has been suggested (e.g., by Attneave [1972]) as a natural expression of
slant, in part because it is simply related to the eccentricity of the foreshortened image of a radially symmetric
form (e.g., a slanted circle images as an ellipse).

An cxperiment was performed to determine between these possible forms for representing slant (see
appendix B). The result is that slant can be resolved with a precision of better than two degrees over the
entirc range of slant angle. To represent slant by the cosine of slant angle to this precision would require that
the cosine of zero and the cosine of two degrees be resolvable. Conscquently, roughly 104 resolvable values
would be required, which is unlikely, given that slant judgments are precise to only a few degrees out of
nincty. Similarly, the tangent form would require considerably finer grain of resolution than is exhibited by
our ability to resolve slant angle. If, however, slant were represented directly by angle, the slant
representation would not require resolution greater than one part in one hundred.
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S. SUMMARY

1. 3-Dinformation is present in the image. in part, as gecometrical configurations such as parallelism, inflection
points, and regularity. While often described as invariants, they do not have unique inverses back into three
dimensions - very different 3-1) configurations may project to the same image configuration. So their 3-D
interpretation must be further constrained. The central issue of this report is examining the needed
constraints.

2. Surface orientation is probably represented in a polar form which makes explicit the orientation of surface
tilt ("which way") and the magnitude of surface slant ("how much") rather than the well-known Cartesian
form based on Gradient space. The reasons are:

(a) Surface oricntation (up to a reflection in slant) is naturally represented in a
polar form. The ambiguity in the direction of surface tilt is implicit when tilt is
specified only as orientation (0 € 7 < #). This ambiguity would have to be

expressed explicitly in a Cartesian form.
(b) The computations of slant and of tilt may then be performed independently.

(c) Imprecision in apparent slant, when present, is not necessarily accompanied by
imprecision in tlt. This is more casily attributed to a polar form which
orthogonalizes slant and tilt, than to a Cartesian form (cach of whose components
necessarily are functions of slant and tilt).

(d) Since information about the orientation of surface tilt is often more reliable
than information about the magnitude of the slant, discontinuities in surface
oricntation are more reliably detected when those components are independent.
Furthermore, the detection of discontinuitics in surface orientation can then be
treated as two distinct “subproblems”: detecting tilt discontinuities and detecting
slant discontinuities.

3. Slant is probably not represented by cither the tangent or the cosine of the slant angle (those being two
natural choices). On the other hand, slant represented directly in terms of slant angle would require an
internal precision of no more than than one part in one¢ hundred to account for the expcrimental data.
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PART 1l
TEXTURE ANALYSIS

1. INTRODUCTION

"The image of a textured surface (refer to figure 6) contains 3-1) information about the shape and distance of
the surface relative o the viewer, and information about the texture itself such as its detailed structure and
physical composition. It seems natural to expect that 3-1 information can be extracted independently of
information about the physical texture. But what about the various types of 3-1) information -- can surface
oricntation and distance information be extracted by distinct computations? The feasibility of such
computations is the subject of this part of the report,

‘The 3-1) information is often attributed to the "texturc gradient”, an informal term referring to the
systcmatic variation in image texturc associated with projections of smooth surfaces. There are two
assumptions:

(3) that quantitative mcasurcments of image texture such as density are
mathematically related to 3-1) quantities such as distance, and

(b) that the human visual system somchow capitalizes on these rclations in order to
derive or extract those 3-1) quantitics.

It is probably fair 10 say that ncither assumption hes been adequatcly substantiated, as the following
discussion will show,

The first assumption roncerns the mathematical basis for extracting 3-1) information. Several
mathematical relationships have been proposed which express cither the slant of a patch of surface, or its
distance from the viewer, in terms of various "image variables”, which [ shall term rexture measures, such as
density, size, and foreshortening. I.et us consider first the proposed slant relations.

The stant angle was shown to be related to the gradient of various texture measures [Purdy, 1960; Stevens,
1979]. For cxample. tan 6 = Vp/3p. where o is the slant angle, p is the texture density at a given region in
the mage, and ¥ is the "grad” operator. ‘These relations are mathematically correct, but most are probably
not useful since they cmbody assumptions which are seldom satisified in natural scenes. Those assumptions
will be discussed in detail later in the article.

The other 3-1) quantity which has been refated 10 the texture gradient is distance. 'T'wo forms of distance
information have been proposed. First. Gibson [1950a, 1950b] claimed that the relative texture density at two
regions of the image cquals the relative distance of the corresponding surface points. ‘This is not correct.
Density is a function of the foreshortening as well as the distance to a give surface point. as will be discussed
later. ‘The other form of distance information is not merely a ratio of distances, but some lincar distance
determined up to a multiplicative constant.  Unfortunately, instcad of measuring distance radially from the
cye to the surface, the distiance s measured “on the ground™ from the observer’s feet, as it were {Purdy. 1960:
Bajesy. 1972: Bajesy & Licherman, 1976). A recent example is found in Rosinski [1974], citing [Purdy. 1960,
in which distance D) is related to the gradient of texture density p by 1) = HVp/3p, where H s the height of
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Figure 6. An image of surface texture. ‘The apparent "texture gradient”, the smooth variation in image
texture, is a consequence of perspective projection. How do we derive the 3-1) interpretation of this image?
What is computed -- distance, or surface orientation, or both? What constraints underlic the computation?
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the cye above the surface. The appealing simplicity of this relation notwithstanding, there are several

problems with the underlying definition of distance. . ‘That definition docs not extend reasonably to
surfuces other than the horizontal ground (two surface points that are radially equidistant from the vicwer but
difter in slant would lie at different distances according to that definition). Also it scems not to correspond to
the psychological notion of visual distance.

A texture gradient doces carry information about the radial distance to points on a surface, however.
Distant features on a surface project to a smaller size than those that are closer. A smooth surface of uniform
texture therefore presents a continuously varying scale from which distance up to a multiplicative constant
; might be recovered. (see Gibson's “law of visual angle” [Gibson 1950a] and the discussion of "scale” by
: Haber and Hershenson [1973]). What remains to be made precise is the notion of “size” or "scale” in terms of
i rcal images. That would lead to a simple and clegant mathematical relationship between distance (radial
E distance specified up to a multiplicative constant) and the texture measure corresponding to “size™. It is
‘ somewhat surprising that so little attention has been paid to this almost obvious source of distance
information. Instcad, the mathematical trcatment of texture gradients has usually involved rates of change of
texture measures.

To summarize this discussion, texture gradients do carry uscful 3-D information, but not in the way that it
is usually formulated. We now turn to discuss the second assum)ption. the psychological recality of the

proposed mathematical relations, an aspect of the texture gradient problem which has actually reccived more
i attention than the theoretical aspect just discussed.
Even if we derive « mathematical expression relating some measure of texture and some 3-D quantity, and i

this relation is founded on rcasonable computational restrictions, it remains to be determined whether the
visual system actually uses the given texture measure. For example, one would like to determine, by
experiment, whether the visual system derives slant information from the variations in texture density.
Unfortunately there is not a sufficiently close correlation between slant judgments and thosc predicted
mathematically to do so -- the experimental evidence is inconclusive (see {Epstein & Park 1964] for a review).
A good cxample of the difficulty inherent in demonstrating whether a given texture measure is used by the
visual system concerns the density measure. Although Gibson [1950a, 1950b] argucs the importance of the
density gradient, a density gradient of dots docs not suggest a surface of definite slant [Smith & Smith, 1957;

Braunstcin, 1968; Braunstein & Payne, 1%;)]. To pursuc this point a bit further, notc that the dot pattern in

figure 7a may scem o be a counterexample -~ the impression of a slanted surface is strong.,  But figure 76

shows that the impression is duc to the apparent horizon. (Figure 7a viewed with a ficld-limiting mask i
stmilarly fails to suggest a definite surface so long as the "horizon” is not visible).

’ ‘The incffectiveness of the density gradient in the case of dot patterns needs explanation. s it the case that

E: the density gradient is used as a source of 3-1) information, but not for dot patterns? (If so, why are dot
patterns incffective -- they provide excellent density information.) Alternatively, is it because the density
gradicnt is not used as a source of 3-1) information, and a dot pattern presents no other information such as a
gradicent of texture size? Later in this article we shall see a strong reason for not using the density gradicent.
Hence the tater alternative is currently favored. ‘The primary point I which to make is the following: therce is
experimental evidence against the density measure being used as a source of 3-) information, but little
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Figure 7. ‘The density gradient in a scems to suggest a surface, but the impression is largely duc to the
apparent horizon. In b the upper boundary is no longer interpreted as an horizon and the pattern no longer
suggests a definite surface. There are computational reasons Lo expect that a density gradient would not be

{ uscful for computing shape from texture,
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cvidence of what measure is used.

Another, surprisingly difficult, problem is to determine what sort of 3-1J information is computed --
whether it is distance, or surface orientation, or whether both are computed independently.  (Other, more
qualitative, descriptions of surface shape arc also a possibility.) We simply do not know what is computed.
I'his point must be scttled in addition to the issucs of which texture measures and which mathematical
relations form the basis of the computation.

Empirical study of texture gradients has been difficult for several reasons. First of all, the slant judgment is
a difficult quantity to interpret. The apparent slant is usually underestimated, a phenomenon called
“regression to the frontal plane” which varies with time [Gibson, 1950b; Smith & Smith, 1957; Beck, 1960;
Purdy, 1960; Frceman, 1965}. The variability and underestimation in slant may be due to several factors, not
the least of which is the effectiveness of the given texture in suggesting a cohesive and continuous surface.
This confounds any atternpt at studying texture gradients with synthesized (c.g., line drawing) textures. For
instance, the apparent slant may be increased and the variance of slant judgments reduced simply by
increasing the ovcrall texture density while holding the image geometry constant (corresponding to a fixed
viewing position relative to a surface whose texture density has been increased). Phenomena such as this
make it difficult to postulate differences in visual mechanism on the basis of differences in slant judgment, as
attempted in the following.

Figurc 8 appears to be a perspective projection of a planar surface with parallel cqually spaced rulings, like
a plowed field. In fact, a texture gradicnt comprised of converging lincar contours usually produces a more
compelling 3-D cffect than docs a texture gradient of individual clements (figure 9) [Clark, Smith, & R.be,
1956). The gradicnt of spacing between contours has been distinguished from other texture gradients and
termed “lincar perspective” [Gibson, 1950b; Purdy, 1960; Freeman, 1965]. 1t has been suggested that lincar
perspective is analyzed by a distinct perceptual processes, primarily on the basis of the superiority of lincar
perspective over a gradient of discrete texture clements in suggesting a slanted surface [Gibson, 1950b; Purdy,
1960: FFreeman, 1965]. But we shall sec later that the computational problems presented by these figures are
cquivalent and therefore may be solved by the same method. There is no computational reason to postulate
separate mechanisms. Furthermore, the noted difference in apparent slant may have other causces -- onc need
not postulate scparate mechanisms to explain that observation,

Also, a texture gradient is difficult to present "in isolation™ of other sources of 3-1) information. Once must
first present the texture monocularly, preferably with a synthetic aperature o remove accomodation cues to
distance and a chin rest to restrict motion. (A photograph of a textured surface presented in this manner
usually provides a satisfactory 3-1) impression.) ‘The difficulty occurs in further “dissecting” the texture
gradicnt, for instance, to understand whether the 3-1) inpression is duc to a gradient of density, or of clement
size, or of height-to-width ratio, or some combination of the gradients of these and other measures, In a
natural scene all measures of texture vary together: as the density increases the clements get smaller, ete. So a
computer display scems an appropriate tool, for one may generate synthesized texture gradients where this
docs not necessarily accur. By controlling the dimensions of the individual texture constituents of the display,
one may vary one measure at a time, it would scem. But isolating the contribution of one texture measure is
difTicult when the "lcxu-nrc clements” have measurcable size. (Recall that texture gradients of mere dots do
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Figure 8. The texture gradient in this figure depicts a planar surface ruled with paralle! and equally spaced
straight lincs. The figure should be viewed monocularly from a distance of roughly 10 inches. This gradient
of spacing between contours has been termed “lincar perspective” and distinguished from other texture
gradicnts (c.g., figure 9).




Figurc 9. This photograph shows a texture gradient which is qualitatively different from the "linear

) perspective” in figure 8. While these two figures appear different, the 3-1) information that they carry may
| be extracted by a common mcthod. There is no computational rcason to postulate scparate perceptual
mechanisms,
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not effectively suggest 3-D surfaces. We are pretty much forced to use textures composed of finite clements.)

For example, supposc one wishes to cxamine the contribution of density gradients to the 3-D effect. How
should the texture clements themselves project? In true perspective the texture clements should be scaled
according to their distance. But that would introduce an unwanted gradicent of texture size in addition to the
desired gradient of texture density. On the other hand, onc might attempt to vary texture density while
holding the clement dimensions constant (this is casily achicved using computer displays, one merely
increases the clement density appropriately but keeps the element dimensions fixed). But that too is
unsatisfactory -- the lack of scaling with distance is distracting and acts 0 decrease the apparent slant. This
problem occurs in attempting to isolate other forms of texture gradients as well.

We will leave the difficult problem of psychological verification just reviewed in order to concentrate on
the theoretical problem of relating variables in the image texture to distance and to surface oricntation. The
first step will be to consider the transformations that occur in projecting surface texture onto the image.
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2. SCALING AND FORESHORTENING

When a patch of textured surface projects in perspective onto the image plane, two geometrical
transformations occur: scaling and (in general) foreshortening:

Scaling occurs because the surface patch subtends a visual angle that varies
inversely with its distance from the viewer.

Foreshortening occurs when the surface patch projects obliguely onto the image
plane, and so causes the texture to appear compressed in the direction that it slants
away from the viewer.

Scaling is actually a function of two variables: the scale of the actual surface texture (whether it is sand or
sca wavces) and the absolute distance of the surface from the viewer, but if we want to recover distance only up
to a scale factor the surface scale is irrclevant. Scaling is an isotropic transformation -- lincar dimensions in all
orientations arc cqually scaled. Forcshortening, on the other hand, is an anisotropic transformation -- surface
dimensions that lic parallel to the image planc are not foreshortened, all others are foreshortened according to
the angles they make to the image plane.

To visualize the commonplace foreshortening function, consider all the diameters of a circle drawn on a
slanted surface. ‘The circle projects orthographically to an cHipse; its various diameters are differently
foreshortened except for that diameter which lies parallel to the image plance (and which projects to the major
axis of the cllipsc). ‘The greatest foreshortening occurring to that diamceter which projects to the minor axis,

‘This decompaosition of perspective projection into scaling and foreshortening lets us explicitly address the
two cffects of the projection that are dircctly related to surface shape. It is from thesc effects that one may
infer distancc and surface orientation.

Each small region of image texturc may be thought of as the projection of a patch of the physical texture,
where the transformation is completely determined by the distance and orientation of the corresponding
patch on the physical surface. Can we recover the distance and orientation by somchow mcasuring the effect
of this transformation, without having a priori knowledge of the physical texture? (If the transformation has a
uniqucl inverse, perspective would be invertible and this would be possible.) The crucial point is to choose
the right measurc of the image texture. We shall sce, for instance, that texture density does not lead to a
unigue inverse -- the perspective projection is not invertible when described in terms of density.,

In general surface texture projects nonuniformly. But what might we infer if the texture is uniform across
the image? One interpretation is that the surface texture is uniform and both the scaling and foreshortening
are constant.  In that casc, all points on the surface would be equidistant from the viewer and would present
the samc surface oricntation. On the other hand, the surface texture might not have been uniform; it was only
the viewpoint that caused the texture to appear uniform. This is not usually the case, simply because of the
rarity of combinations of irregular surface texture and viewpoint that would mislcad us this way.

Image texture that varies systematically has been informally termed a "texture gradient”. 1 will continue

L. ‘The inverse phrased in tcns of distince need only be specificd up to a scale factor.

T G, FE
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this usc of the term. ‘There are three contributions to the texture gradient, i.c., three causcs for the variation in
texture:

(a) variation in distance to points across the surface. The result of distance
variation on texture will be termed a scaling gradient.

(b) variation in surface orientation across the surface relative to the viewer. The
result of variation in surface orientation on texture will be termed a foreshortening
gradient.

(¢) variation in the physical texture across the surface. Nonuniformity of the
surface texture may produce a texture gradient that is indistinguishable from that
due to scaling and foreshortening. So it is probably nccessary to assume that the
surface texture is unifonm so that the nonuniformity may be attributed to changing
distance and surfacc oricntation., (However we shall see that positive evidence may
be found in the image that would support this assumption, and also indicate when
the surface texturc is probably not uniform.)

The foreshortening gradient may be isolated from the scaling gradient by viewing a curved surface from a
distance that is large cnough so that variations in distance to points on the surface is small compared to their

absolute distances, i.c., the surface is viewed in orthographic projcclion.] Bear in mind that the physical
texture is assumed uniform. In this situation the scaling is effectively constant across the image of the surface
-- there is no gradient of scaling, only a gradient of forcshortening.
But if the same surface is viewed from ncarer by, there would be significant variation in the distance to
points on the surface. The farther patches of surface project with a smaller scale, so a scaling gradient would

¥ also be apparent. }
!

{Note that there will also be a gradient of foreshortening due to variation in the surface orientation relative
to the viewer. Hence even a plane surface seen in perspective presents a gradient of foreshortening -- as the ) g
linc of sight approaches the horizon the slant approaches #/2 and the foreshortening increascs accordingly.
‘Thus it is relative, viewer-centered curvature and not intrinsic surface curvature that causcs the variable
forcshortening.)

! Scaling and foreshortcning must be described quantitatively in terms of some measures of texture. By
' judicious choice of the measure, we can atiend to that component of the texture gradient that encodes surface
© orientation or that which encodes distance. What measurements should be made? Candidates that have been
i proposed are density, size (the lincar dimensions of distinct "texture clements™), arca. and height/width ratio
(or "aspect ratio™). ‘T'o preserve the orthogonal decomposition that we have been secking, the following

L2 . i

criteria should be met:

1. If the surface subtends a relatively small visual angle one may treat the projection as the conventional orthographic projection (also
cafled paratlel projection) onto a planar image. Otherwise it is more appropriate o treat the projection as potar orthographic ono a
spherical image.
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When computing  distance, the texture measure should be independent of
foreshortening,

STV A

When computing surface orientation, the texture measure should be independent
of scaling.

T

At this point we understand why density is not a useful measure for computing either distance or surface
oricntation: Texture density p is a function of both the surface slant ¢ and the radial distance d from the
viewer:

P = coso
where ps is the surface texture density. Density does not meet either of thesc criteria, hence does not lead to a

simple computation of either distance or surface oricntation. This may provide an explanation for the

]

! ;
' ineffectiveness noted carlier of density gradients suggesting 3-D surfaces. i
Ef The next scction will introduce a measure of texture that does meet the first of the two criteria, hence

would be appropriate for computing distance.
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3. COMPUTING DISTANCE FROM TEXTURE

A dircct method for computing a depth map (a visible surface representation whose values specify the radial
distance to the surface up to some scale factor) will be introduced which is based on mcasurements of texture
that vary only with scale, not with foreshortening. Simply stated, we wish to extract a quantitative measure of
the local texture that varies only with the distance to the surface, not with the orientation of the surface
relative to the viewer. The reciprocal of this measure would be proportional to the radial distance to the
surface. The computation itsclf, therefore, is very simple. The effort lies in extracting the appropriate
mecasures from the image.

A natural measure is provided by what I shall term characteristic dimensions which correspond to
dimensions on the surface that arc not foreshortened, i.c., dimensions that lic parallel to the image plane. One
can easily gain intuition for characteristic dimensions by means of a surface texture of circles (figure 10). Each
circle foreshortens into an ellipse, with cccentricity that varies by the cosine of the slant angle. The major and
minor axcs, being well defined in the image, present natural lengths to measure. Of these, the major axis
length is the characteristic dimension for this idealized texture -- its reciprocal would constitute scaled
distance. (Note however that a real texture would not present as simple an image geomectry from which to
choose the characteristic dimensions.)

The distance computation based on the reciprocals of characteristic dimensions is valid for any smooth
surface, but there is a fundamental restriction: To derive a consistent depth map the measured characteristic
dimensions must all rorrespond 1o equal surface dimensions -- the surface texture must be uniform. This
restriction is probably unavoidable in any method for computing distance from texture, as will be discussed
later.

To summarize, the depth map may be computed by:

(a) determining the local characteristic dimensions,

(b) taking their reciprocals as specifying distance up to a single multiplicative scale
factor, assuming that they correspond to equal length surface dimensions.

The two steps present the following two problems, both of which are to be solved without @ priori knowledge
of the surface texture. ‘The first will be referred to as the characteristic dimensions problem: which of the
dimensions definable in the image correspond to nonforeshortened physical dimensions? Secondly, the
characteristic dimensions must correspond to equal length surface dimensions for their reciprocals to define a
consistent depth map. When is this assumption of global surface uniformity justified? Solutions to these two
problems will now be discussed.

3.1 The characteristic dimensions problem

‘The difficulty of this problem depends on when its solution is attempted. [f deferred until the physical units
of texture are recoghized (as individual rocks, waves, or blades of grass) then their characteristic dimensions
may be extracted with assurance. (Also the problem of justifying the equal surface dimension assumption is
simplificd.) But this texture analysis is probably attempted prior to recognizing the physical causes of the
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Figure 10. A texture of circles is uscful for introducing characteristic dimensions. In this instance, the major E
axcs of the individual cllipses arc nonforeshortened and thus may scrve as characteristic .dimensions. :

Assuming that the circles are all of equal diamcter. the reciprocals of these lengths would provide vatues for a
depth map. A basic visual problem is 10 determine these dimensions from real images without a priori
knowledge of the physical surface texture,
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image texture, so all that is available to determine the characteristic dimensions is the arrangement of intensity

variations in the image. Conscquently we scck a geometrical solution.

3.1.1 Characteristic dimensions and intensity variations in rcal images

Figure 11 shows images of real surface textures where examples of characteristic dimensions are indicated by
line scgments. These were drawn by intuition, and in questioning how to consciously choose them in these
figurcs we recognize a fundamental computational problem in their extraction: on the one hand, the
measurcments should depend solely on the viewing geometry and the gcometry of the physical texture, but on
the other hand. these measurements are to be extracted from intensity information which is intimately tied to
the particular illumination and reflectance properties of the surface.

Using the metaphor of applying a ruler to the image -~ what should we measure? Perhaps the dimensions
of patches of roughly constant image intensity? Or the separations between edges that are intersected by the
ruler along its length? Or the dimensions of closed zero-crossing contours available in the computation of the
primal sketch [Marr & Hildreth, 1979). This ruler metaphor suggests methods for extracting quantative
descriptions based on explicit mecasurement of discrete image "features”. Alternatively, should we distinguish
peaks in the Fourier power spectra [Bajscy, 1972; Bajesy & Licberman, 1976]) as signifying the prominent
dimension of the texture in any vicinity? ‘This method would usc spatial frequency as an image "feature”
which scems more continuous than discrete.

How characteristic dimensions are actually measured is not casily settled, since onc cannol point to any one
mcthod as being intrinsically "correct” -- it is incvitable that any method of solution to this problem will nnly
be heuristic if attempted on the basis of insufficient information, as is the case in attempting to compute 2
depth map without a priori knowledge of the surface texture, The solution is probably based on dctectable
gecometrical propertics of the texture which indicate the appropriate lengths to serve as characteristic
dimensions. In the following we shall examine these geometrical propertics. The distinct issue of how the
lengths are actually extracted will not be addressed in this study.

3.1.2 Characteristic dimensions may be defined geometrically

Characteristic dimensions correspond to nonforeshortened surface dimensions, therefore cach is the
projection of a length lying in the tangent planc of the surface, oriented such that it lies parallel to the image
planc. For a smooth surface that means that the characteristic dimensions are locally paralie! (and also
globally parallel if the surface is planar). local parallclism is the first of several geometrical properties of
characteristic dimensions that may be used as the basis for their sclection.

Secondly, the characteristic dimensions are oriented perpendicular to the local surface tilt (this fact was
vbscrved in part L, section 4.2.1). What remains to be shown in order to use this property is that the local tilt
can be determined on the basis of the texture. But that is straightforward:

For any smooth surface the scaling and perspective gradients coincide -- the oricntation of greatest change
in forcshortening and the orientation in which scaling varics most rapidly both align with the surface tilt.
Consequently the gradient of any measure of texture that is sensitive to cither foreshortening or scale, or both,
may be used to indicate the tilt orientation,

This sccond property may be rephrased in the the following way, which although mathematically

v om—
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Figure 11, Intuitive choices for characternstic dimensions are indicated by line segments in these instances of
textures. In guestioning how to consciously choose the chdaracteristic dimensions we recognize a fundamental
computational problem in texture analysis:  the extraction of quantatative descriptions from  intensity
nformation,
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cquivalent suggests a different algorithm: The orientation of the characteristic dimensions is everywhere
cqual 10 the orientation in which measures of texture (that are sensitive (o foreshortening or scale variations)
cxhibit the least vanability, That is, the characteristic dimensions are locally aligned with the oricntation of
greatest regularity.  Note that computing this oricntation is distinet from computing the oricntation of the
gradient.

In sum, the characteristic dimensions are locally parallel, oriented perpendicular to the texture gradient,
and aligned with the oricntation of least texture variability.

3.1.3 An example

In the introduction, the converging lines pattern in figure 8 was given as an example of "lincar perspective”
and I suggested that there is no computational reason for treating this sort of figure as a special case distinct
from textures composed of small discrete features. We will now pursue this point and at the same time
provide an example of how characteristic dimensions might be defined in an image.

Consider the texture in figure 124, which when viewed monocularly from the appropriate distance is
interpreted as a slanted surface receding in depth. The “texture elements”, as it were, are straight lines which,
in and of themselves, do not provide uscful dimensions (especially when viewed through an occluding mask,
as the circular boundary in figure 12 is mcant to suggest). One useful texture measure is the separation
between the lines, which diminishes with increasing distance to the surface. However the term "separation”
must be made precise, and towards this end the geometric properties of characteristic dimensions just
introduced are useful: An imaginary ruler placed across the image will intersect successive lines at increasing
or decreasing intervals along its length, in general. At one orientation, however, successive lines are
intersected at regular intervals -- this orientation corresponds to that of the characteristic dimensions (figure
12b). "The reciprocals of these intervals between lines would give us the depth map. ‘I'wo observations may be
madc from this.

First, the characteristic dimensions are locally parallel and oricnted with the greatest regularity. But it is
difficult to determine the orientation of the gradient of spacings between successive lines -- it is not well
dcfined locally. ‘This is particularly true when few lincs are presented. ‘Three divergent lines are sufficient for
preciscly computing the tilt orientation in terms of regularity but not in terms of the gradient. So, despite
their mathematical cquivalence, the orientation with greatest regularity (or least variability) is casier to
compute than the orientation with the texture gradient.

Sccond, the relevant texture mceasure docs not correspond to the dimensions of discrete "texture
clements”.  Instead, the measurements correspond to laying down a ruler, as it were, and determining the
local statistic (such as the scparation between successive contours) that is most regular.  hmportantly, this
approach which is exemplified by the "lincar perspective” case, extends as well to the more natural case of
discrete blob-like textures.

3.2 Uniformity and regularity of surface texture

As discussed carlier, the surface texture is assumed uniform when inferring distance from the reciprocals of

the characteristic dimensions. By “uniform™ we mean that the physical dimensions corresponding to the
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H Figure 12. The texture in @ poscs an interesting question regarding the extraction of characteristic dimensions ',
! from an image -- how arc they defined when the dimensions of the individual "texture clements” are not ¢
%

relevant? ‘The appropriate texture mcasurcment seems to involve the separation between lines, In these
terms. we find that the orientation of the gradient is not casily determined. but the perpendicular orientation
is. T'he orientation in which successive lines are intersected with the most regular intervals may be accurately
determined by a simple locai process. ‘This orientation is shown in b, and corresponds to the orientation of the
characteristic dimensions. ‘The reciprocals of these intervals, would give us the depth map.
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{ characteristic dimcnsion§ arc cqual across the surface. s there visual cvidence in the image that would
support the uniformity assumption? ‘That evidence would allow the distance computation o be restricted to
only those instances where the results would likely be accurate.

‘There are two basic issues that must be addressed. ‘e first is local regularity, as measurcd by the variation
in physical size of the texture markings in any sufficiently small locality, ‘The sccond is global uniformity,
whether the local propertics are constant across the surface. The four extremes that might occur are as
follows:

1. Locally regular and globally uniform. Fxamples would be a ficld of poppies, cars
in a parking lot, lcaves on the ground. In cach instance the individual elements
are restricted to a small range of sizes, and the mean size is constant across the
texture. ‘That is, the variance is small and the mean is constant.

2. Locally regular but globally varying. An cxample would be waves on a lake,
where the waves in any vicinity arc of similar size but that size varics gradually
across the lake according to the wind strength in each region. Another example
would be a racky beach where the surf acts to sort the pebbles according to size.
While the variance is small the mean is not constant. | suspect that this case is less
frequent than case (1) for reasons that will be discussed shortly.

3. Locally irregular but globally uniform. An cxample would be a ficld of rocks
where in any vicinity small pehbles might be found beside large boulders, but the
distribution of sizes is constant across the ficld. Another example would be sca
waves, where there is a large range of wave sizes in any vicinity, with small waves
supcrimposed on larger. While the variance is large the mean is constant. This is
probably a common situation.

4. Locally irregular and globally varying. Any casc where the variance is large and
the mean is not constant would be uscless for the depth computation.

Thesc extremes were presented in the order of decreasing usefulness for the depth computation.  Physical
texture of type 1 is the best for our purposcs. The small variance and constant mean across the surface results
in a depth map that is accuratc and precise. If the mean varyies slowly (type 2) the depth map would falsely
indicate greater distance where the surface texture diménishes in actual size, and vice versa. The depth map
would be precise but not accurate. If the local size statistics are not tightly distributed. as in types 3 and 4, a
different problem occurs: The depth map would be imprecise due to uncertainty in the local characteristic
‘ dimensions. For example, with the ficld of rocks a small pebble might lic adjacent to a large boulder. The
! characteristic dimensions must therefore be locally averaged in order to estimate the corresponding distance
to the surface. In the case of sca waves, however, the distribution of sizes may be broad: small proximate
waves may be as plentiful as Lirge distant waves and all intermediate wave sizes may be cqually plentitul. In
that casc it is difficult to compute a uscful estimate of the local mean, and depth computation on the
characteristic dimensions would require more complexity. (One possibility is to sclect only qualitatively
similar waves, in cffect ignoring the small superimposed waves in order to attend to sca waves of common
sizc.)

Reflecting on these four extreme casces, it is apparent that an estimate of the local variance in characteristic
dimensions is important. IF the variance is low, we have cither type | or 2 texture and the depth map accuracy

is limited by the constancy of the physical mean size across the surface. I the variance is farger (type 3), but
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the local mean may still be estimated, the depth map may be computed, but to less precision.

The local variance of characteristic dimensions provides an indication of the precision of the depth map,
but no indication of its accuracy. Evidence for the accuracy is global, and is based on qualitative similarity of
propertics that would be invariant over perspective projection. Examples of possible similarity measures are
color and intensity statistics, qualitative shape descriptions of the individual markings, and other measures
which allow one to determine whether the physical surface texture is qualitatively constant across the surface.
That is, global similarity indicates qualitative uniformity. The two criteria that we will use, then, are (a) local
regularity and (b) global similarity. From these we may infer global texture uniformity in the following
manner. |

Local regularity indicates the physical surface is ecither type 1 or 2. Global similarity indicates the surface is
more likely type 1. since any physical texture so constrained is probably produced identically across the
surface. For.example, oak leaves strewn across a yard are qualitatively similar and have similar sizes. The
global uniformity in leaf sizc is a consequence of how leaves develop and is independent of how they are
distributed across the ground. In short, type 1 is probably more likcly than type 2. If this is true, then in the
presence of global similarity:

the mcan physical texture size is assumed constant across the surface if the local
variance in image texture is small.

We have discussed the case where the texture has small variance locally. What about types 3 and 4? Can
they be distinguished? Without the tight constraint on texturc size the constraint on mean size cannot be as
readily assumed. Nonctheless, if the texture is qualitatively similar on various dimensions we can assume that
the mean, despite the large variance, is roughly constant. That is to say, significant global similarity indicates
the surface is likely type 3 rather than type 4.

It must be stressed that these justifications for assuming texture uniformity are heuristic, and that their
utility stems from the overall tendency for surface textures that are strongly constrained in their qualitative

propertics to be constrained in size as well. It casy to find counterexamples to this, nonctheless, it scems
unlikely that better cvidence may be found in the image.
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il 4. COMPUTING SURFACE ORIENTATION

In perspective projection where significant scaling variation occurs across the image, we have two ways to
compute the local surface orientation. The oricntation may be computed from the gradient of distance values
in the depth map. Also, the oricntation may be computed in the image, by the gradient of the characteristic
dimension &:

vé

tano =T

where o is the slant angle. In fact, this computation has the benefit over the depth computation in requiring
only that the surface texture be locally uniform. But the computation of cither distance or surface orientation
from characteristic dimensions is incffective when the surface is in orthographic projection. Despite the
foreshortening gradient in the image due to surface curvature, the depth map would be constant, falsely
indicating a flat surface. How then might surface orientation be computed?

4.1 Aspect ratio: dependent on foreshortening, independent of scaling H

To ke advantage of the foreshortening gradient as a source of information about surface orientation, it

would be necessary to have the computation valid not only when the projection is orthographic but also when

the scaling gradient is significant. This may be achicved by having the texture measure sensitive only to

foreshortening, as suggested carlier. A texture measure that has this property is the "height/width" ratio, also

called “aspect ratio”. This measure is the ratio of the projected dimensions of individual surface markings

taken in the direction of the gradient and perpendicular to the gradient (the latter being the characteristic
| dimension). In the special case of roughly circular surface markings (which project as roughly clliptical) the
aspcct ratio € directly indicatcs the local surface oricntation:

cOSO = €. 1)

" But if we are not going to restrict oursclves to circular markings on the surface, the normalized gradient is
useful:

where the particular aspect ratio of the actual surface markings need not be known: they only must be Jocally
constant. ‘The difficulty that ariscs from this mcasure € is as follows: how do we know that the aspect ratio
§ {which we define on blobs in the image, for instance) is a valid measure of foreshortening of markings on the

surface?
4.2 The difficulty in computing slant from foreshortening

Surface texture is foreshortened according to the cosine (1) if it lies flat on the surface, as is the case with
pigmentation markings and patches of differing physical composition.  Examples would be fallen leaves,
lichen on a rock, water lillics on a pond, and patterns of mottled light on the ground below a tree. But
surfaces arce usually textured “in relicf” -~ the elements that comprise the texture extend above and below the
mean surface level. Consider the crests and troughs of waves, rocks strewn across the ground, and blades of
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grass. When viewed other than at zero slant, the texture is foreshortened, but not simply by the cosine. The
relation between € measured in the image and surface slant o is not as casily determined without knowledge
of the physical texture.

In onc extreme, if the surface clements are roughly spherical (c.g., pebbles on a beach) their dimensions
would be roughly constant regardless of viewpoint, hence there would not be a foreshortening gradient -- if
measured in terms of aspect ratio . Nonctheless, there would be a texture gradient due to foreshortening
because the surface patch is foreshortened regardless of whether the individual markings on the surface are
foreshortened. This would be apparent in terms of texture density, but unfortunatcly density is confounded
by a scaling gradient as well,

In the other extreme, the surface clements might be grass blades which extend normal to the surface,
whose foreshortening (measured by the eccentricity ¢) would vary according to the sine, not the cosine, of the

slant angle. Then we would have that
to = Ve
cotg = —=.

Consequently, we have three well-defined foreshortening functions, cosine, sine, and no foreshortening. To
choose among these cases in order to infer slant ¢ from e mcasured in the image we must know whether ¢
derives from texture that lics flat on the surface or from texture that extends above the surface -- and if the
texture is in relicf, whether it is foreshortened by the cosine or not at all. (Most physical textures do extend in
rclicf and therefore fall intermediate between the extremes of sine foreshortening and no foreshortening.)

Furthermore, if the surface markings are closely packed (as is the case with water waves, tree bark, and
pebbles on a beach) there is a succession of occlusion -- of waves occluding waves, for instance. The occlusion
is relatively greater with incrcasing slant and thus affccts the apparent aspect ratio as measured by €. Hence
successive occlusion amounts to another, confounding, foreshortening cffect.  For example, the amount of
occlusion of successive waves is a complex  function of the viewing angle. As this depends critically on the
particulas - -rface geometry (it is quite different for tree bark, for instance) we are Icft with two difficult
problems when attempting to infer slant from aspect ratio €:

Distinguishing the foreshortening due to oblique projection from that duc to
successive occlusion. ‘The measure € would confound the two effects.

Inferring the particular foreshortening function for this texture. What is the
rclation between ¢ and o?

Aspect ratio € was proposed as an appropriate texture measure for computing surface orientation because
it is related to foreshortening but is independent of scaling.  But the relationship between ¢ and o depends on
the particular surface texture, and any choice appropriate for a given situation will often be inappropriate for
another.  For instance, if the slant computation is correct for flat surface textures it will be incorrect for

surface textures in relicf. Thus the uscfulness of aspect ratio would appear slight.

There is probably no alternative texture measure that is independent of scaling but varics in a predictable
manncr with foreshortening.  Conscquently we might turn to a special case approach: using some mcasure
such as texture density, which does vary with both scaling and forcshortening,  but only usc it when it is
known that the scaling contribution to the density gradient is negligible. 1f the depth map (computed by the
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reciprocals of characteristic dimensions) is flat, we know the scaling is constant so the gradient of texture
density is solely a consequence of foreshortening. Thus we may compute surface orientation from a texture
measure that varics with both scaling and foreshortening when the scaling is constant.

We have discovered the difficulty in computing surface slant from mcasures of foreshortening -- the
foreshoriening function depends on the particular relation between the surface texture and the surface, which
cannot be known a priori.  Alternatively, the computation may be based not on the foreshortening of the
individual surface markings (as measured by ¢) but on the cosine forcshortening of patches of the surface (as
measured by density, for instance). Relative to the computation of a depth map, the computation of local
surface oricntation appears difficult -- at lcast the computation of slant docs. But the other component of
surface oricntation, tilt, is rcadily computed.

The characteristic dimension § was given a gcometrical definition in scction 3.1.2: in any small region, they
are locally parallel, oriented perpendicular to the texture gradient, and parallel to the oricntation of least
texture variability (where one may use any measure of texture that is scnsitive to foreshortening, or scaling, or
both). This definition also suggcsts a way to computing the surface tilt 7, since tilt is perpendicular to 8. That
is, the tilt corresponds to the orientation of the gradient, and is perpendicular to the orientation of least
texture variability. (Again 1 give both definitions because they suggest different computations although they
are mathematically equivalent.) Hence one should expect to compute from texture the tilt of the surface more
readily and more precisely than its slant.!

1. This point supports the argument made carlicr (section 4.2 in part 1) in favor of decomposing the two degrees of freedom of surface
oricntation into slant and tilt.
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5. SUMMARY

1. The perspective projection may be usefully thought of as comprising two independent transformations to
any patch of surface texture: scaling and foreshortening. Scaling is due to distance, foreshortening is due to
surface orientation. A decomposition of the problems of computing distance and surface orientation from
texture measures is therefore suggested: When computing distance, the texture measure should vary only with
scaling; when computing surface orientation, the measure should vary only with foreshortening.

2. Texture density is not a useful measure for computing distance or surface orientation, since it varies with
both scaling and foreshortening.

3. Distance up to a scale factor may be computed from the reciprocals of characteristic dimensions, which
correspond to nonforeshortened dimensions on the surface. Characteristic dimensions may be defined in the
image by the following gcometrical properties: they are locally parallel, oriented perpendicular to the texture
gradient, and are parallel to the orientation of greatest texture regularity. The computation requires that the
surface texture be uniform.

4. Evidence for uniformity of the actual surface texture is both global and local. Locally the texture must
project as rcgular; globally the texture must be qualitatively similar. ‘The assumption that allows one to
deduce uniformity is as follows: if the surface texture has small size variance (which may be detected locally),
the mean size is assumed constant regardiess of where the texture is placed on the surface. Justification for
this assumption stems from the following: constraints on the texture size that causc it to be roughly constant
(and therefore of small variance) often occur independent of position on the surface.

5. Surface orientation may be computed from the depth map, by computing the gradient of distance, when
significant scaling variation is present in the image. However the depth computation fails for curved surfaces
in orthographic projection, hence surface orientation cannot be computed from the depth map in those cases
-- the depth map would falscly indicate a flat surface. In attempting to compute surface orientation from the
image, the texture measure should vary with foreshortening but not vasy with scaling. However such
measures arc difficult to interpret unless the particular foreshortening function is known which relates the
measure to surface slant. Furthermore, successive occlusion associated with vicwing texture which lies in
relief relative to the mean surface level acts to confound the apparent foreshortening. Slant is therefore
difficult to compute. However the tilt may be computed as the orientation of the characteristic dimensions.
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PART 1I
SURFACE CONTOUR ANALYSIS

1. INTRODUCTION

‘T'his part describes geometrical constraints that may govern the way in which we perceive surface shape from
surface contours in an image. In figure 13, for cxample, the smooth curves are scen in 3-1) as lying on an
undulating surface. We appreciate not only the shape of the surface, but also its spatial orientation relative to
us, and 10 some extent we perceive the overall surface as receding in depth. The difficulty we face in
interpreting figure 13 as mercly a two-dimensional family of sinusoids (which it is) shows that we impose
constraints in the form of a prieri assumptions. Some of these assumptions lead us to interpret certain curves
in the image as being surface contours (which correspond to actual curves across 3-1) surfaces); others
constrain the inferred surface shape that we derive by analysis of the surface contours. For the surface
percept to be both definite and accurate, such constraints must define a unique surface, and must generally be
valid.

Although many have considered our perception of the shape of contours (e.g., [Koffka, 1935)), the problem
of inferring surface shape from surface contours has received virtually no attention. The primary intentions of

this part of the report are

(a) to formalize the computational problem,
(b) to introduce uscful and valid constraints towards its solution, and

(c) to describe why those constraints are uscful.

1.1 What information is carried by surface contours?

The contours in figure 13 are in nrthogruphicl projection; hence we cannot derive distance information from
perspectivity in the image. But the shape of the contours docs provide surface shape information in two

forms. In the vicinity of the surface contour once may deducc cither:

surface orientation. Vhe relative surface orientation may be solved uniquely (i.e..
up to a slant reflection since the projection is orthographic) or only W within a
restricted range of slant and tilt.

qualitative surface shape. "The intrinsic gecometry of the surface may be deduced
from the shape of the surface contours. ‘The primitive descriptors might include
"flat”, "singly curved”, “cylindrical”, "doubly curved” and so forth, ‘This sort of
shape information is independent of the viewpoint.

1. Orthographic projection is equivalent to a parallel projection, as opposed to a perspective projection. Figure 13 demonstrates that we
may pereeine shape from surface contours in orthographic projection. Fater we will see that assuming that the projection is orthographic
(and not perspectinve from somie unknown viewing geometry ) is probably necessary i the analysis.
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Figure 13. ‘The undulating surface is suggested by a family of sinusoids. (This figurc is adapted from Bridget
Riley's Katarakt 3.) 'I'he curves are naturally interpreted as surface contours, i.c., the images of markings on a
physical surfuce, What constraints can be brought to bear in making this 3-1) interpretation?
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‘This is not to say that a depth map may not be computed from the image. but that the geometry of contours in
an orthographic image more directly constrains surface orientation and intrinsic geometry than distance == the
computation of a depth map would cffectively require the intermediate computation of surface orientation.

Note that information about intrinsic surface shape serves two uscful purposes:  (a) it constitutes a
primitive, coordinate-free shape descriptor, and (b) it constrains the*values in any representation of surface
orientation or distance. Suppose that it can be determined from the image that a surface region must be
singly curved, then this restriction can be imposed on any independently computed distance or surface
orientation representation -- the distance or surface orientation must vary in a manner consistent with a singly
curved surface. Later we shall sce the contribution of this qualitative shape constraint on the computation of
“shape from shading” (c.f., [Horn, 1975]).

1.2 Contours and contour generators

It is valuable to distinguish between a contour in an image and the corresponding curve in 3-D, called the
contour generator, that projects to that contour (see [Marr, 1977a]). The contour generator is a physical curve
which lies across a surface, such as a boundary between patches of differing reflectance (e.g., a pigmentation
marking), a discontinuity in illumination (c.g., a shadow edge cast across the surface) or a discontinuity in
surface orientation (c.g., a crease). ‘The contour generator may also correspond to the boundary of the surface
from the given viewpoint.

So on the one hand, we have the contours in the image; on the other hand, their corresponding physical
curves in 3-D), the contour generators. ‘To make 3-D interpretations from the image contours we ofien need to
understand what causes them -- whether they correspond to object boundarics, shadow cdges. or what.

Onc basic distinction that is often proposed is between object vutlines (also termed bounding contours or
vceluding contours) which correspond to the edge of an object’s silhouette from the given viewpoint, and
those contours that lie internal to the silhouctte (which Gibson has called "inlings™). A slight variant would
be to distinguish only those bounding contours that correspond to the silhoucttes of smooth objects. ‘This
distinction is probably fundamental for reasons that will be given in the following,

1.3 Tangential contours and surface contours

Physical objects arc often smooth, and their sithouettes alone provide a strong source of information about
the overall shape [Marr, 1977a). For instance, consider a vase. Its silhouctte projected onto the retinal image
might appear like the outline shown in figure 14a. In this case, the contour that comprises the outline wil be
termed a tangential contour. 'The name stems from the important fact that the line of sight just grazes the
surface (i.c., lics tangential to the surface) along the corresponding contour generator. This is a direct
conscquence of the smoothness of the object. An important class of outlines arc those that cxhibit qualitative
symmetry across an axis (c.g.. figure 14q). If is assumed that the corresponding surface is smooth then the
silhouette is that of a generalized cone whose 3-1) shape is recoverable (given some other restrictions, see
[Marr, 1977a)). In this case, the silhouctte boundary is comprised of tangential contours. Note that the

surface orientation is known along a tangential contour: the slant is #/2 and the tilt is perpendicular to the

contour.
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Figure 14. 'I'he curves in a are interpreted as tangential contours and the underlying surface is seen as a
generalized cone, in this case, a vase-like object. Those in b are interpreted as surface contours and the surface
{ appears fike a gently curved flag or a ruled shecet of paper.
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In the previous discussion the object was assumed smooth, whercupon its outline is comprised of
tangential contours, But this is not the case for objects with angular faces (as do many man-made objects), or
objects that arc basically 2-1 surfaces (e.g., a leaf). For such objects the surface orientation is discontinuous
along the contour generator which corresponds to the outline. Siace the line of sight daes not graze the
surface along the edge, the silhouette boundary is not a tangential contour. Observe that the contours in
figure 145, which we interpret as the outline of a gently curved sheet, present a fundamentally different
problem than the contours in figure 14a. Neither do we assume that the surface is smooth nor that the
contours arc tangential contours.

The distinction that I propose is therefore not between "outlines” and “inlines” -- not whether the contour
is along the boundary of the silhouette or interior to the bounary. Instead. the distinction is between the
special case of outline contours, the tangential contours. and all other contours regardless whether they are
outlines or lie interior to the object's projection. This means that the outlines of objects that are not smooth
will be treated as surface contours for our purposes. The reason for this is the following. The fact that a given
contour is part of an object outline does not constrain the shape of the underlying surface, cxpect when the
surface is smooth. Otherwise, the contours merely delimit the visual extent of a object from the given
viewpoint. The rest of this scction will address the problem of using surface contours. In general, it will not

concern us whether the surface contour is a outline contour as well.
1.4 Surface contours; structural and illumination

Thus far, we have only distinguished between tangential contours which correspond to the outlines of smooth
objects, and all other contours (those being collectively termed surface contours).  But there are various,
distinct physical causcs of these surface contours. 1n particular. we can distinguish two broad categorics of
surface contours, roughly spcaking by whether the associated contour generator corresponds to a physical
feature on the surface or merely due to illumination. The first category will be termed structural contours, the
latter, illumination contours.

Structural contours are the projections of contour gencrators which mark some discontinuity on the

surface, c.g. of reflectance or of surface orientation. Examples that occur in nature are given by the images of

pigmentation markings on a zebra, wrinkles on skin, parallel ridges on leaves, rings on bamboo stalks, and
cracks on wood or rock.  Images of synthetic objects comnionly present structural contours corresponding to
scams, sharp edges, groves, and pigmentation markings.

Wuminaton contours are of three types: {a) the projections of glossy reflections, such as those that appear
on metallic or wet surfaccs, (b) the projections of shadow edges that have been cast upon a surface, and (¢) the
images of sclf-shadows, or "terminators” on surfaces. These three types have been grouped together as
illumination contours because their presence is strongly dependent on the particular illumination and may
shift their position relative to the surface as the viewpoint or light source geometry changes. They are all
potentially uscful sources of information about the shape of the surface, as we shall see. but since they depend
on particular arrangements of illumination and viewing gecometry. they mity he considered as fortuitous,

It is noteworthy that we derive such strong 3-1) impressions from line drawings. 1t suggests that we do not

restrict the 3-Dyanalysis of surface contours o contours of known physical interpretation. ‘The curves in figure
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13 are given strong geometrical interpretations without cvidence as o whether they arc structural or
illumination.

1t will therefore be useful to the subsequent discussions to present a few examples of line drawings and to
comment on their 3-1) interpretations. ater 1 shall refer back to these figures in order 1o illustrate particular

constraints.
1.5 Examples of 3-D interpretations

Perhaps contrary to intuition, individual line drawn curves may be given stable and definite 3-D
interpretations. That is to say. the curve appears to have a definite contour generator fixed in space rclative to
the viewer. Admitedly. the impression one gains from casual observation of these figures may be weak; if so,
view them monocularly with a ficld-limiting tube to help suppress the fact that the figures are merely drawn
on paper. Slant reversals will be disregarded in this discussion since they are expected with orthographic
projection.

An cllipse is a familiar cxample of a simple curve that appcars in 3-ID.  There are actually two
interpretations: the curve may be treated as a surface contour whose contour generator is a circle, or the curve
may be treated as a tangential contour and the figure is seen as the silhouette of a smooth object (an cllipsoid).
We will only consider the case where the curve is interpreted as a surface contour. 1f an cllipse is deformed, a
"potato chip” surface is visualized (figure 154). ‘That is to say. the surface appears singly curved. The
following obscrvation is consistent with that interpretation: the dashed lines in figure 15b, which connect
parallel tangents, appear to lic entirely on the surface.

A few observations may be made about the 3-D interpretations of individual curves in general. First, if the
contour is smooth and not self-intersecting (as in figure 164) it tends to appear planar. That is to say, the
contour generator is planar.  Note that we may confidently judge the spatial orientation of the planes
containing the contour gencrators. {(Again, disregard the reversals in apparent slant of those planes.) Our
tendency o assume planarity is strong; it is difficult to draw a smooth cursc (that is not sclf-intersecting)
which appears to twist in space; it almost invariably appears planar.

Secondly. if the contour has a sharp discontinuity in tangent, as in figure 165, the corresponding corner in
3-Doappears o be a right angle. In other words. figure 160 appears to be the corner of a sheet of paper.

inally, if the curve is self-intersecting (figure 16¢) it is given cither of two spatial interpretations.  In one
interpretation, the contour gencrator is seen to twist in space so that it does not actually intersect itself. In the
other interpretation, the contour generator is self-intersecting, and the intersection is a right angle. In gencral,
we tend to assume that obtuse angles (formed cither by discontinuitics in tangent or intersections) are
foreshortened iniages of right angles. Figure 17 shows various examples of intersecting straight lincs, each of
which appears to be a right angle in space. First, note that a simple intersection (figure 174) is quite cffective
in defining a planc. This cffect was observed by Wundt and ferring (see [Fuckiesh, 1965; Robinson, 1972)).
The parallclograms in figures 170 and 17eare constructed with the same obtuse angles of intersection and line
lengths as the corresponding interscctions in figure 174, ‘Vheir spatial oricntations are very similar.
{Appendix A cxamines our pereeption of surface orientation with these figures.)

Figurc 18 demonstrates both tendencies, i.c.. for planarity and for right angles. The smooth curve in figure
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Figurc 15. The curves in a arc scen cither as the silhoucttes of smooth objects (tangential contour
interpretation) or as the image of potato chips (surface contour interpretation). In the latter case, the surface
is seen as singly curved, and the dashed lines in bappear to lic entirely on the surface.
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Figure 16. In @ smooth contours that do not intersect tend to appear planar and to assume definite spatial
orientations. In bsharp discontinuities in tangent in the contour are interpreted as the images of right angles.
The self-intersecting contours in ¢ are seen cither to twist in space (so that the contour generator does not

actually interseet itself) or as the image of a sclf-intersecting contour generator, where the intersection is a
right angle.
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Figurc 17, Each intersection in « has a definite spatial orientation and appears to be a right angle in 3-1. ‘the
spattial orientations in cach row of this figure appear very similar.  Note that the figures in b and ¢ are
constructed with the same obtuse angles of intersection and line lengths as those in a.
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Figurc 18. When the curve in a is intersected by a few parallel straight line segments, as shown in b, a surface
like a gently curved picce of paper emerges.  Each intersection appeirs to be a right angle in space, and the
curve itself appears planar. As in figurce 154, the surface scems to be singly curved.
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184 presents little 3-D effect. But when the curve is intersected by a few parallel straight line segments (figure
180 a surface like a gently curved picce of paper emerges. Fach interscetion appears to be a right angle in
space, and the curve itself appears planar. As in figure 15b, the surfice scems to be singly curved, apparently
because of the parallelism of the added lines. 1f those lines are not parallel, two interpretations result. First,
one may interpret the figure in perspective, as if the surface were very near the viewer, thus cxplaining the
divergence of the two lines. Sccondly, the surface may be seen to iwist in space, as a helicoid, i.c., a spiraling
picce of paper. 1t is worth sketching similar curves in order to observe these effects.

Keeping in mind our tendency for planarity and right angle interpretations, let us examine a few more
simple configurations of curves. In figurc 19a the sinusoid does not appear in 3-1J, but if a lincar component
is added (¢ = sinax + bx) the curve appears to recede in depth (figure 195). The mousc hole in figure 19¢
also appears in 3-D. Thesc figures arc examples of our sensitivity 1o projections of bilateral symmetry. That is
to say, if a surface contour may be given a 3-1) interpretation for which the contour generator would be
symmetric, that interpretation is taken.

The cxamples thus far have involved cither single curves or simple intersections of curves. In general,
multiple curves (treated as surface contours) are not particularly uscful in suggesting a surface unless they are
parallel, or they comprise a familiar arrangement. (The latter case is not of interest to this study.) An cxample
of parallcl contours of which we are seldom aware is provided by haichures, the regular parallel markings
uscd by engravers. Examine the bust of Washington on a dollar bill. The cngraver varies the spacing of the
hatchures in order to shade the depicted surface, but also, the hatchures follow the surface relief
“appropriatcly”. Obscrve that the undulations in the hatchures suggest surface features such as ridges und
depressions. Another instance in which paraliel contours suggest a surface is shown in figure 20, a graphical
depiction of a function of two variables. A function z = f{x.y) is oficn displayed by a family of curves
produced by holding either x or y constant for various values, and continuously varying the other parameter.
These curves are othographically projected (usually from an oblique viewpoint) to present a display of the
function surface as if it were intersected by a set of paraliel plancs.

‘There are complicating factors in our perception of this figure. Both assumptions of viewpoint and of
occlusion arc involved, as readily demonstrated by inverting the figure. A paradoxical depth impression may
arisc by these assumptions being brought into conflict. I the viewpoint is assumed to be such that distance to
the surface increases as one scans from bottom to top (as is almost always true in outdoor scenes) then the top
of the inverted figure should be farther than the bottom. contrary to that which is indicated by occlusion (the
central peak appears occluded by the upper portion, and to occlude the lower portion, thereby implying that
the top of the figurc is ncar than the bottom). ‘The paradox may be resolved by imaginging that the top is
farther (as if the surface hangs downward from the ceiling) whercupon the figure is scen as consistent in
depth.

In addition to the influences of viewpoint assumptions and of occlusion, our interpretation of contours
may involve assumptions of perspective. I<igure 21a appears to be a tunnel in perspective projection, wherein
the circles are scemingly taken to be of equal diameter in 3-D. Figure 2186 has two interpretations, a flattened
tunnel (again a perspective interpretation) or a flat disk such as a phonograph record (an orthographic

interpretation).
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Figure 19. In a the sinusoid docs not appear in 3-1, but if a lincar component is added (y = sinax + bx) the
curve appears to recede in depth, as shown in 5. The mouse hole in ¢ also appears in 3-1). ‘These figures
demonstrate our sensitivity to projections of bilateral symmetry.
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Figure 20. An example of the familiar depiction of a function of two variables 2 = fix.y) as the orthographic
projection of the curves defined by by holding cither x or y constant for various valucs. and continuously
varying the other variable. ‘There are complicating factors in our perception of this figure, Assumptions of
viewpaoint and of occlusion are involved, as readily demonstrated by inverting the figure. A paradoxical depth
impression may arise by these assumptions being brought into conflict. 1 the viewpoint is assumed to be such
that distance o the surface increases as one scans from bottom 1o op (as is almost always true in outdoor
scenes) then the top of the inverted figure should be farther than the bottom, contrary to that which is
{ indicated by occlusion (the central peak appears occluded by the upper portion, and to occlude the lower
purtion, thereby implying that the top of the figure is near than the bottom). The paradox may be resolved by
imagining that the top is farther (as il the surface hangs downward from the ceiling) whercupon the figure is
P seen as consistent in depth.
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Given these examples of our 3-1) interpretation of surface contours we now turn to address the problem of

constraining their interpretation.  First, we will examine a decomposition of the problem into two steps, cach
of which must be constrained. Constraints for cach step are then introduced, and their validity discussed.
Discussion of how thesc constraints arc computationally useful is given in scction 4.
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Figure 21, In «, which we interpret as a tunnel in perspective projection, the circles are apparently assumed to
be of equal diameter in 3-D. (A reversal causes the figure to appear as a cone protruding from the page.) In b
there are twa interpretations. a flattened tuanel or a flat disk such as a phonograph record.
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2. THE CONSTRAINTS

In the following discussion a surface will be denoted by Z, a contour generator by T, and the projection of T’
from viewpoint V will be the contour Cv (sce figure 22). (When the viewpoint is not discussed, the contour
will be referred to simply as C.)

A surface contour in the image is the projcclionl of a contour generator I lying on a surface Z; neither the
shape of T nor Z is known a priori. Note that the surface contour C is completely determined by the 3-D
locus of its gencrator T in space relative to the viewer, regardless of the orientation of the surface on which T
lics so long as the surface allows I to be continuously visible along its Iength. This is an important.point. We
want to infer the shape of the surface X from the shape of the surface contour C, but in fact C is not a
function of the shape Z; C is only a function of . In order to infer the shape of Z, the relationship between
I and T must be constrained. 1.ikewise, to infer I from C, the relationship between I' and C must be
constrained. The decomposition that is suggested, therefore, involves two stages:

(a) inferring the shape of the contour gencrator in 3-space (C = T') then

(b) determining how the surface lies under the contour generator (I’ = Z).

‘This can be thought of as {(a) bending a wirc in 3-space so that it appcears to the viewer as does the contour in
the image, then (b) gluing a ribbon along the wire to represent the strip of surface that lics directly under the
contour gencrator. In these terms, we see that infinitely many bendings are poséiblc that would appcar
identical from the given viewpoint, and the ribbon may twist arbitrarily along the wire. These two aspects of
the problem are distinct.

This characterization applics equally to the problem of inferring surface shape from multiple surface
contours {C i} in the image, such as those in figure 13. "Mae geometrical arrangement of {Ci}' particularly if
they are parallel, may constrain both stages I and [1 (section 4.2.2). Note that the appearance of figure 13 may
Iead one to suspect that parallelism uniqucly constrains the surface, but the image is in orthographic
projection and significantly different surfaces may project to the same image -- the scparation in depth
between the contour gencrators on the surface is not restricted.? Thus cven in the case of multiple parallcl
contours, the surface interpretation process must be constrained, and that constraint is naturally described in
terms of the above two stages,

‘This decomposition provides a framework for applying constraints to the problem of inferring 2 from C.
‘The constraints necessary for stage 1 involve projective geometry, for the problem is naturally one of
"deprojecting” from the image curve to the curve in space. The constraints necessary for stage 11 do not
involve projective geometry - they do not depend on the particular viewpoint. Rather they involve intrinsic

1. The projection is assumed orthographic. ic., the contour generator is assumed small compared to its viewing distance.  The
penpective distortions otherwise induced in its projection would be infeasible to differentiate from those induced by slight twisting along
its fengeh. Note further that the informal term “image plane” will be used. altheugh the retinal projection is more closely approximated
by spherical projection.

2. In Fact. onc consisient surface solution is gisen immediately by the sheet of paper on which figure 13 is printed -~ the parallel contour
generiators would be the ink on the page.

i iicia s, oo i i el h e iR
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Figure 22. The orthographic projection of contour generator T from viewpoint V is Cv. ‘The curve C is
termed an occluding contour if it is an edge of the silhouette of an object from viewpoint V. In particular, if
the fine of sight just grazes the surface along I then the curve G is also a tangential comtour. The image curve
Cvis termed a surface contourif it is not a tangential contour.
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geometry, specifically the relationship between the curve on the surface and the surface itself.
2.1 Some geometrical concepts

‘This section reviews some concepts that are necessary for discussing the relation between a curve on a surface
and the underlying surface itsclf. | shall review the notions of Gaussian curvature, lines of curvature,
developable surfaces and cylinders, asymptotic curves, and geodesics (c.f. [Hilbert & Cohn-Vossen, 1952)).

To introduce Gaussian curvature, consider the family of normal sections at some point of 2 smooth surface,
i.e., the contours that result from sections that contain the surface normal at that point. The various scction
contours through that point usually vary in curvature, with greatest and Icast curvature occurring at two
principal directions (except when the curvature is constant for all directions, us with a sphere). An important
property of the two principal directions is that they are mutually orthogonal at cvery point on the smooth
surface.

The Gaussian curvature at a point is the product of the greatest and least curvatures. The Gaussian
curvature may be positive, negative, or zero, and for an arbitrary surface may vary continuously across the
surface. For example, the curvature is positive on a smooth pebble, negative on a saddle surface, and zero on
acylinder (defined momentarily).

A line of greatest (or least) curvarure is a curve whose tangent everywhere coincides with onc of the two
principal directions. Important examples arc the cross sections and meridians of surfaces of revolution (which
of these is the line of greatest curvature depends on the surface shape).

A developable surjace is a surface with zero Gaussian curvature everywhere (i.e., the curvature in at least
one of the principal directions vanishes). Thus the lines of least curvature are straight lines on a developable
surfacc. Examples of developable surfaces are plancs, cylinders, and helicoids. Informally, they correspond
1o the class of surfaces that may be made by twisting and curling a sheet of paper.

A cylinder is a developable surface where the lines of least curvature are parallel. Cylinders may be formed
by curling a sheet without torsion -- it may be rolled into a tubce or be rippled like a hanging curtain. It is
uscful to think of a cylinder as a one-dimensional surface.

An asympltotic curve is a locus of points on the surface where the Gaussian curvature is zero. By definition,
all curves on developable surfaces are asymptotic. On the other hand, surfices with everywhere positive
Gaussian curvature (such as a sphere) have no asymptotic curves.  And surfaces of negative Gaussian
curvature must have asymptotic curves. since the principle curvatures are of oppasite sign and for some
dircction between the principle directions at cach point on the surface the curvature must vanish.

Finally, a geodesic. usually defined as the shortest path between two points on a surface, is also a curve
whosc principal normal! cverywhere coincides with the surface normal. Importantly. the lines of greatest and

least curvature on a cylinder are geodesics.

1. “The principal normal 1o a planar curve is the perpendicular to the tangent 1o the curve and lies in the plane of the curve. ‘The
principal normal to a curve with torsion, similarly. is perpendicilar to the tangent but lies in the osculating planc of the curve at that
point (where the osculating planc is defined by two successive angents it the given pomt). Note that we will ofien resticl curves to be
planar, so fixmyg the planc of a geoadesic immediately fixes the normal to the surface
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2.2 What constraints might be uscful?

We now introduce some constraints that allow solutions to steps I and 11, ‘They are provided by restricting the
geometrical propertics of the contour gencrators, and restricting the relationship between the contour
generators and the surface on which they lic. This scction only tabulates the various geometric restrictions.
Next, in section 3 we will discuss the validity of assuming that these restrictions hold in natural situations
involving actual contour generators on physical surfaces and, in section 4, we will describe how the restrictions

constrain the shape-from-contour analysis.

2.2.1 Constraints on the contour generator
With regard to step 1, the 3-D shape of a contour generator T (corresponding to a given surface contour C)
may be recovered if restrictions are imposed on I and on the vicwing position. Some of these restrictions are

listed below.

(a) general position, the viewpoint is not mislcading. This allows one to infer
properties of the contour generator T on the basis of the properties of its image,
the surface contour C. For instance, if C is smooth then I is smooth; if {C i} are

parallel then {T i} arc paraliel.
(b} planarity, T is planar. This reduces the problem of determining T to that of

determining the orientation of the plane [l containing I'. ‘The plane IT is
constrained by the following.

(c) symmetry. Given planarity and gencral position, if C presents evidence of
symmetry then T is symmetric, and the orientation of IT must be consistent with T

being symmetric.

(d) minimum curvature variation. Given planarity and general position, if the
curvature of I' is roughly constant then the variations in curvature apparent in C
may be attributed to foreshortening.  Consequently that planc IT that minimizes
the variation in curvature of T would solve I'.

2.2.2 Constraints on the relation hetween contour generator and surface

Given the contour generator T, the surface £ may be solved if the relationship between T and 2 is restricted.
If [ is planar and lics on some plane 11 then the relationship between the contour generator and the surface is
naturally described in terms of the angle between [1 and the tangent planc to 2 for points along T, The
relation between the surface and the contour generator is quite simple if we make the strong restriction that
this angle is constant along the length of I'. That is to say, the plane containing the contour generator meets
the surface at a constant angle. ‘The two cases we will consider is when the angle is #/2 and zero.

If the angle between IT and the tangent planc to 2 is #/2, then:

T is geodesic. “Ihe surface normal coincides with the principal normal 1o T for
points along T.

If the angle between 1 and the tangent planc to 2 is zero. then:

O e

iy e o




e p 1t G

-19- ‘The constraints

Stevens

[ is asymptotic. The surface normal coincides with the normal to I1 for points
along T', and furthermore, the Gaussian curvature of 2 for points along I is zero.

These (wo solutions, geodcesic and asymptotic. form the basis for constraining the relation between the
contour generator and the surface. Given general position and planarity, we also have an imponant

restriction on 2 in the case of paratlel surface contours {C l-}:

{r ,-} are parallel lines of curvature and X is a cylinder. Furthermore, if the contour

generators are geodesics, they are lines of greatest curvature: if asymptotics, the
surface degenerates to be planar.

And finally, a derivative of the cylinder restriction may apply in the case of a single surface contour, if the
corresponding contour generator is a line of greatest curvature and the surface is cylindrical, by the following

restriction:

2 is opaque. The image of an individual linc of greatest curvature on a cylinder
allows some restriction on the shape of the surface.

Surface contours are often weak sources of information about the surface shape when analyzed individually,
primarily because it is difficutt to deduce the shape of the contour generators on an individual basis. The
more important case probably involves the geodesic restriction on a collection of parallel contours taken
together. ‘Then the parallelism may be used to advantage in constraining the shape of both the contour
generators and the surface on which they lie. Before pursuing the utility of these constraints any further, it is

important to gain some insight into their validity.
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3. WHEN ARE THE CONSTRAINTS VALID?

Do the contour generators in the real world meet these restrictions? In some situations it is valid to assume
that a contour generator is, say, planar and geodcsic, as we shall sce. But there are also instances where the
same assumptions are not valid -- the real world does not necessarily constrain the curves on surfaces to
comply with any of the various idcal gecometries. How often are the restrictions met in actuality? This is the
issuc of “ecological validity” discussed by Gib. .n, Brunswick, and others (c.f. [Gibson, 1950; Postman &
Tolman, 1959]). We start with considering the validity of assuming general position.

3.1 General position

General position implics that the viewpoint is representative -- that the image taken from this position does
not mislcad us by accidental alignments. Two cxamples of viewpoints that are not general position may be
imagined for a cube: In onc instance the cube is positioned so that its silhouette is a reg.lar hexigon.  Equally
misleading would be a cube positioned so that its sithouctte is a perfect square.

When the assumption of general position is correct we may make valid deductions, in particular,
deductions about contour gencrators. ‘Two cxamples of these deductions which we shall pursue are the
following: If a surface contour is smooth, the corresponding contour generator is smooth, and if surface
contours are parallel, their contour generators arc also parallel.

The contour generator need not be smooth simply because its projection is smooth: a discontinuity in
tangent along a contcur gencrator might be hidden from the given viewpoint -- the plance containing the
discontinuity might also contain the line of sight so that the discontinuity would not be apparent. But if the
distribution of spatial oricntations of plancs relative to the viewer is uniform, the likelihood of such an
accidental alignment would be insignificant. Similarly, some non-parallel curves may be constructed such
that they appear paralle! from certain viewpoints, but the probability of achieving a viewing position that

allows this alignment becomes insignificant as the curves diverge from parallelism in 3-space. !

3.2 Geometrical properties of structural contours

In gencral, the geometry of structural contours is not strongly constrained because the processes that cause

them are varied and often random. There are. however, some types of physical markings that arc well
comstrained.

I'he clearest examples. perhaps. involve synthetic objects. With reference to the objects about you, observe

wamooth surfaces of man-made objecets are usually comprised of cither (a) planar surfaces, (b) singly

artaces an particular eylinders, or (c) surfaces of revolution. In general, the boundarics between

Danar primarily for reasons of fabrication. Again, because of convenience in manufacturing as

covd surtaces are usually sliced by normal sections. Thus joints between surfaces of an object

e the reasonable evpectation that the instances of actual parallelism, straightness, and so forth, are
[EERIL AT TIN
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comprisc geodesics on one or the other of the juining surfaces. ‘The end of a "tin can” would be an example.
Surface markings other than scams or joints are often geodesics as well, particular when the markings arc on
cylinders. When the markings are also planar, they additionally constitute lines of curvature. 'This
combination of properties, planarity and geodesic, is particularly common.

Markings on surfaces of revolution usually follow cither the axis or some cross scction. Hence these scams,
cdges, ridges, and pigmentation markings are lines of curvature, geodesic, and planar. (A notable exception
can be found in the spiral scams on cardboard tubes. They arc geodesic but nonplanar.)

Flexible surfaces, both natural and synthetic. tend to be noncompressible hence developable, and are
therefore cylinders when not subjected to torsion. Wrinkles produced by compression tend to be lines of
curvature,

Many biological forms may be approximated as being composed of gencralized cones [Marr, 1977a). These
surfaces often have markings that follow cross scctions and meridians on the surface, and therefore are also
lines of curvature, geodesic, and planar. Biological objects are often bilaterally symmetric, such as leaves.
Their axes of symmetry arc often evidenced by physical markings, and symmetric patterns are usually
arranged across that axis. The symmetry may be used to advantage to restrict the possible orientations that
would be consistent with the 3-D form being symmetric.,

3.3 Geometrical properties of illumination contours

3.3.1 Cast shadows

The edge of a shadow cast across a surface is a fortuitous source of information about surface shape. We are
familiar with the cffectiveness of the shadow a fence post cast upon snow in indicating the undulations in the
surface. But to accurately analyze the surface from the image of the cast shadow, a number of variables must
be known. There arc essentially two projections involved: the projection of the shadow onto the surface (the
cdge of which becomes the contour generator Ty and the subsequent projection of T onto the image plane (as
contour C). Thus the contour C in the image depends on (a) the shape of the physical shadow-casting cdge,
(b) the position of the light source -- together they specify the bundle of rays that will be cast upon the surface
-- and (c) the position of the shadow-casting edge relative to the surface, and finally (d) the shape of the
surface itself.

To appreciate the complexity of shadow interpretation in the general case, consider again the image of a
tree trunk shadow cast on snow. Suppose there is a kink along the shadow cdge. s that duc to a sharp
depression in the snow (for instance, is the shadow falling across a footprint) or is it duc to a kink in the tree
(and the snow itself is flat)? If analyzing the shape of the surface is attempted prior to knowing the above
factors, some assumptions arc necessary. In the approach suggested here, the assumptions are two:

the contour generator is planar and geodesic.

In terms of this example, the above transtate into assuming the cdge casting the shadow is straight and that its
profile (determined by the sun position and the trunk) intersects the ground at a right angle. Then if there is
an apparent kink in the shadow edge it will he attributed to the surface. not to the tree. (Incidentally, it is

informative to observe the shadow cast on the flat ground by a young tree which has a crooked trunk. ‘The
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ground often appears to undulate according to the curves in the cast shadow.)

So we should discuss how the planarity and geodesic restrictions help the shape analysis, First note that if
the shadow-casting edge is straight the contour generator (the shadow edge cast across the surface) constitutes
a planar scection of that surface. That is, the contour gencrator lies in the planc defined by the straight
shadow-casting cdge and the point light source. In this case, we may alrcady dctermine qualitative
information about the surface shape. Given gencral position, if the contour in the image corresponding to the
shadow cdge is straight, the surface is flat; if it is curved, the surface is curved. To determine more
quantitative shape information requires that (a) the relation between the contour gencerator I and the surface
be known, and (b) the orientation of the plane of I’ be known. Hence we introduce the geodesic assumption.
That is to say, the shadow edge across the surface is assumed to be a normal section of the surface. Weak
justification for this assumption derives from considering shadows cast on the ground: Since shadow-casting
edges are usually vertical (c.g., tree trunks, building cdges, telephone poles, fences), the edge of the shadow
amounts to a normal section, i.e., the shadow cdge is roughly geodesic.

~ When do multiple, parallel sections occur in real situations? We may disregard the shadow of a picket
fence as being artificial, but notice that two parallel sections would result from the shadow edges cast on some
surface by a relatively narrow object such as a tree trunk. Another possibility concerns motion:  successive
vicws of a moving shadow edge. Successive positions of a shadow cdge that sweeps across a surface in
translatory motion would constitute parallel sections of the surface. Docs the visual system take advantage of
this fact? Is our ability to analyze parallel surface contours a derivative of an ability to analyze moving
shadows? This hypothesis would be supported if we could perceive a surface defined only by a single moving
contour that scans across an otherwise invisible surface, In fact, this ability may be demonstrated by a motion
sequence of a single contour on a CRT, where cach frame presents only a single curve. Note that the moving
curve might be interpreted simply as a flexible wire that bends as it translates, or more literally, as a curve in
the plance of the screen that changes shape as it moves. But, in fact, there are instances when we interpret the
moving contour as a shadow cdge sweeping across a 3-1) surface (e.g., when the individual curves in figure 13

arc presented in succession).

3.3.2 Specular reflections: gloss contours and highlights
Gloss contours, like shadows, are fortuitous, i.c., usel.. but not necessarily present. ‘They are present only
under dircctional lighting conditions on specular surfaces, when the surface normal lies in the ptance defined
by the point light source, surface point, and viewer and bisects the angle defined by that configuration. ‘This
configuration (the speculurity condition) is rarcly met with planar surfaces but is commonplace for curved
surfaces, cspecially when viewed indoors with multiple lights illuminating the surface. ‘The specularity
condition may be met only at an isolated point, causing a highlight, or met along a curve, causing a gloss
contour.

For a doubly curved patch of surface the specularity condition is met at only a point, if at all, and would
only produce a highlight in the image. A gloss contour cannot occur on - a surface with nonzero Gaussian
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curvature in orthographic projection given a point light source.! For a gloss contour to occur - for the
specularity to appear not as a point but as a curve -- the specularity condition must be met along a continuous
curve on the surface. With orthographic projection and distant light source it is necessary that the contour
gencrator (the locus along which the specularity condition is met) be planar. ‘That plane corresponds to the
tangent planc to the surface along the contour generator. Now two results in differential gcometry are useful:

A curve is asymptotic if it lics in a plane cverywhere tangent to the surface along
the curve.

If the angle between a planar curve and the tangent plance of the surface is
constant, then that curve is a line of curvature.

Using the above, we may conclude that the curve across the surface that corresponds to the gloss contour is
asymptotic and a line of (lcast) curvature. Since the asymptotic curve follows a path of zero Gaussian
curvature, we have information about the intrinsic geometry in the vicinity. Of importance is the following:

If the gloss contour is curved, the surface is planar. This is true in orthographic
projection with distant light source. (With ncarby objects and perhaps nearby
illumination, the surface would not be strictly planar. But in general the surface
curvature measurcd along the contour generator will be small, much less than that
mcasured across the contour generator.)

If the gloss contour is straight, the surface is cylindrical when cither (a) gloss
contours from successive viewpoints are parallel, or (b} if there are multiple light
SOUTCES \as is common in interior scenes) and multiple gloss contours are parallel.

These deductions hold subject to gencral position, of course.

‘Thus the specular reflections in the image can tell us not only somcthing of the reflectance propertics of
the surface, that the surface is specular [Beck, 1972], but also something about the surface shape, namely, that
the Gaussian curvature is nonzero in the vicinity of a highlight and zcro in the vicinity of a gloss contour. 'The
shape of the gloss contour also specifics the intrinsic shape of the developable surface.? This docs not strictly
hold when the surfaces or light sources arc near by, and especially when the light comes from an cxtended,
rather than a point, source. Nonctheless, it is instructive 10 observe the gloss contours on specular surfaces --
they almost invariably follow the least curvature paths on actual surfaces.

3.3.3 Shading contours and terminators
The previous discussion assumes bright, directional light sources. However the specular surface not only
reflects the light sources as a highlight or gloss contour, but also acts as a mirror - the various glossy

1 In real situations we have two wavs in which gloss contours may arise. Iirst, extended light sources (such as (luorescent lights, bright
windows) will exiend point reflections into images of the light sources. which appear as gloss contours if compressed because the two
prinaiple curvatures are very different - Sccondly, m perspective projection we may have that as the line of sight sweeps across the surface
(the projection is not paratie!) the angle between the fine of sight and the surfiace stays relatively constant duc to curvature of the surface,
suich as when viewing the inside surface of a cup fiom nearby. Then if the specularity condition is met at one point in that vicinity, i
would be met along a locus. Thus in perspective projection highlights may spread inte gloss contours as well.

2. Furthennane, the surface normal coincides with the normal to the plane containing the gloss contour. but 1o utilize that fact the 3-1)
curve corresponding to the gloss contour must be determined. That is the topic of section 4.1,
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{ reflections comprise an image of the surrounds distorted by the gecometry of the surfiuce. This is the extreme
case of mutual illumination which nakes "shape from shading™ difticult. The incident illumination is an
intructably complex function of the surrounds. But without understanding this illumination. the shape of the
surface cannot be solved from the shading,

With the addition of a matte component, the fine details in the reflections are lost, and the gloss contours
become less definite. In the limit case of a Lambertian surface there is no specular component and the
shading is only a function of the surface orientation relative to the various sources of illumination. For this

g reason one would expect that the surface orientation would be computed from shading most feasibly,

however the ilumination is still determined by the surrounds and is still quite unconstrained. Conscquently,

the computation of shape from shading (where "shape™ means local surface oricntation) is quite difficult.
Most surfaces are neither totally matte nor glossy so their images present weak highlights and gloss
contours -- the distinction between shading and gloss becomes vaguc. One may postulate, therefore, that
shading only constrains the local surface gcometry in the manner just described -- the local surface orientation
is not computed directly from the shading. Instead, the local surface orientation would be smoothly
interpolated between those tangential contours and surface contours along which surface orientation can be
solved. The interpolation would be subject to the constraint on intrinsic surface geometry provided by the
gloss and shading contours. This constraint is naturally described in terms of Gaussian curvature: A highlight
indicates positive Gaussian curvature in the vicinity. Similarly, a gloss contour indicates a locus of zero
Gaussian curvature.

Constraint on intrinsic gecometry is also provided by the shuding contours known as tenminators, surface
contours which corrcspond'to paths on the surface along which the light grazes the surface so that points on
one side of the contour are illuminated, points on the other side arc in shadow. (A terminator is analogous to
a tangential contour scen from the light source position.) A strong restriction on the surface shape is provided
wherever the terminator is straight in the image: the surface is locally developable (again, assuming general
position) and therefore the terminator indicates a locus of zero Gaussian curvature.
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4. 1IOW THE CONSTRAINTS ARE USEFUL

Thus far we have discussed a number of gcometrical properties that may be uscful in constraining the analysis
of shape from surface contours. Instances in which these properties hold in real scenes were described. What

remains is to become more specific about why these propertics are computationally useful.
4.1 The relation between a surface contour and its contour generator

The current problem is to determine the contour generator I' in 3-space on the basis of its projection, the
surface contour C. The projection will be restricted to be orthographic. This restriction would hold whenever
the dimensions of the curve in space are small relative to the distance from the curve to the viewer.
Orthographic projection is lincar, hence some useful geometrical properties arc prescrved, notably
parallclism.

Now, in determining the shape of contour gencrators in 3-space we are confronted with a problem
wherever the tangent to the contour (its slope) is discontinuous: Is that discontinuity the projection of a
discontinuity in tangent along the contour gencrator, or is the discontinuity due to the adjoining of distinct
contour gencrators on the surface? Since this cannot be answered locally without a priori knowledge of the
specific surface, we follow the principle of least commitment [Marr, 1977a) and partition the surface contours

in an imagc into their smooth segments.

4.1.1 General position

A number of constraints will be conscquences of assuming general position -- that the viewpoint is such that
images from necarby viewpoints would not present significant differences in the gecometry of the projected
contours. By this we rule out viewpoints that cause accidental alignments which mislead. For irstance, if a
contour C is straight from viewpoint V, then assuming general position, it would be straight from a similar
viewpoint -- it is not the casc that the contour generator I is curved in a plane but that planc is viewed "cdge
on” so that the image of T is foreshortened into a straight line. General position allows one to infer properties
of contour generators on the basis of their images, such as smoothness, continuity. and parallclism.

Our first application of general position is as follows. Since the contour C is smooth and continuous, T is
smooth and continuous.! Furthermore, in general position, ncarby and distinct points on I" project to ncarby
and distinct point on C. That is, there are no kinks or loops in I hidden by the particular viewpoint. In short,
assuming general position allows us to consider I as a smooth wire in 3-space. Now we consider additional

constraints which allow us to determine its shape.

4.1.2 The planarity restriction
If the contour generator I is constrained to be planar, the shape of I’ would be completely determined by the
cquation of the plane containing the curve given its orthographic projection C. Hence the planarity

1. We would like to say something about the smoothness of the surface directly under the contour generator on the basis of the surface
comtour heing smooth, but unfortunately that does not follow from general pawition as stated. 'The smooth contour gencrator may lie
along a sharp ridge, for instance.
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restriction reduces the problem of determining T to that of finding the spatial orientation of the plane Tl
containing T'. .
Since the contour generator T is determined once  is specified, one approach is o in.pose an a priori

choice of T, then examine the shape of T that results. ‘That is, one assumes a particular spatial oricntation for

Ly

the planc containing the contour gencrator. But there do not appear to be any reasonable choices for 11,

D

except for the ground plane, i.c.. the horizontal plane defined by gravity. However it is not feasible to assume ?
that all surface contours are projections of horizontal contour gencrators.

Alternatively, one may make a priori assumptions about the shape of T in the same spirit as assuming that
T is planar. Then IT would be a consequence of C and those restrictions on . What restrictions can be
reasonably placed on T, and how are those restrictions to be phrased? [ shatl consider two -- symmetry and

minimum curvature variation.

4.1.3 Symmetry

Bilateral symmetry is commoaly found in nature and usually preserved, at least indirectly, in orthographic
projection. We are interested in symmetry, for evidence of symmetry in an image will provide constraint on
the shape of T. We start with the usual definition of a bilaterally symmetric, planar curve as comprising two
loci of points that are reflections of cach other across a straight line, the axis of symmetry (figure 23a). The
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symmectric points are cquidistant across the axis, the linc connecting any two symmetric points is
perpendicular to the axis, and all such lines are therefore parallel.

In any orthographic projection of this curve, the image of symmetric points are cquidistant across the
image of the axis, the correspondence lines connecting those points are parallel, but the correspondence lines >
are no longer perpendicular to the imag - of the axis in general (figure 235). This configuration has been aptly ‘
termed "skewed symmetry” by Kanade and Kender [1979]. If a unique line can be found that behaves, in this
scnse, as the image of an axis of symmetry, then by general position we will assume that the planar curve in
space is bilaterally symmetric. (Refer back to figure 19.) ‘That is, we have criteria for detecting bilateral
symmetry. When these criteria are satisfied in an image we may assume that it is not coincidental, that it
would also be satisfied in an image taken from a different viewpoint - hence due to actual symmetry. The
problem that remains is to detect the images of symmetric pairs of points. I

Orthographic projection is lincar, hence a number of propertics are preserved by the transformation

including midpoints, poin.s of inflection, and convexity and concavity [Marr. 1977a). Marr has shown, in the &
context of finding the axes of generalized cones, that axial symmetry can be efficiently detected by the ‘
qualitative symmetry between convex and concave segments. rather than on a point-by-point basis. This
extends to the detection of bilatcral symmetry, where the correspondence lines between qualitatively
symmetric segments would be parallel. 'The line defined by the midpoints of the correspondence lines would

LRI o T

be the image of the axis of symmetry.

Returning to the problem of constraining the shape of the contour generator, the symmetry detected in C
constrains T to be symmetric and this in turn constrains the orientation of the plane Tl containing T.
{ Specifically, [T must be oriented relative to the viewer such that, given C, I would be symmetric if lying on .

This constraint is simply expressed in terms of the correspondence angle, the angle in the image between
the correspondence line and the projected axis of symmetry (figure 235). Since the correspondence angle is
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Figure 23. ‘The bilateral symmetry in @ can be described in terms of correspondence lines which connect
symmetric points lying cquidistant from a straight linc, the axis of symmetry. ‘The parallel correspondence
lines are perpendicular to the axis of symmetry. In b the correspondence lines connecting qualitatively
symmetric scgiments of the curve are also parallel but make an oblique angle B with the axis of symmetry.
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the image of a right angle on the surface, the magnitude of the correspondence angle B constrains the possible
spatial oricntations for the tangent plane at that point (sce figure 24).

In short, T is presumed symmetric if an axis of symmetry can be reconstructed from the midpoints of
parallel correspondence lines, where the correspondence lines are constructed between qualitatively
symmetric segmeats of C. The correspondence angle then constrains the spatial orientation of the plane
containing I,

4.1.4 Minimum curvature variation

‘The curvature of C encodes information about the oricntation in space of the contour generator T, if T is
planar and some other restrictions hold. Witkin [1979] has shown that the oricntation of the plane I1
containing I' may be cstimated on the basis of the curvature along C if we assume that systematic variations in
the curvature that rescmble foreshortening are due to foreshortening. Then one may choose that plane IT that
maximally accounts for the variation in curvature in terms of foreshortening. The following assumntions are
sufficient to allow this analysis:

(a) the possible surface orientations of I are equally likely,

(b) the tangents to the contour gencrator arc arbitrarily aligned relative to the
viewer (they are independent of slant o and tilt ), and

(c) the curvaturc along the contour generator is independent of o, 7, and the
oricntation relative to the viewer of the tangent to the contour gencrator I,

‘The constraint on T that results is roughly cquivalent to  assuming that the variation in curvature along T is
minimum [Witkin, 1979]. Then the variation in curvature along its projection C may be attributed primarily
to foreshortening, whercupon the degree of foreshortening -- hence the orientation of the plane TT containing
I' -- may be estimated. ‘T'o introduce this, consider the case when T is a circle, a planar curve with constant
curvature. ‘The orthographic projection C is an cllipse; the curvature along the cllipse varies according to the
foreshortening of the corresponding segment of the circle. One may derive from the variance in curvature an
estimate of the orientation of the plane containing T,

This constraint has been phrased in terms of minimum curvature variation, but Witkin describes it more
generally as a problem of signal detection. The "waveform” that we consider is the contour in the image
(parameterized in terms of contour curvature), The curvature at any point on the contour consists of two
components, one being the curvature of the contour generator at cach corresponding point, the other being a
"projective component” which increases or decreases the apparent curvature according to the orientation of
the given segment of the contour generator relative to the viewer (in the circle example, where the tangent lics
parallel to the image planc, the curvature on the cllipse is minimum; where the tangent to the circle is
oriented away from the viewer the curvature is greatest). The curvature of the contour gencerator is treated as
noisc; the projective component is the signal. Since the projection is orthographic and the contour generator
is planar, the projective componcent will be regular.

The problem of determining the orientation of the planc containing I may be recast as that of estimating
the amplitude and phase of a sighal of known wavefonn (the projective component) in the presence of noise
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Figure 24. The oblique angle B formed by the projection of a right angle provides some constraint on both
the slant ¢ and tilt + components of surface orientation relative to the viewer. The possible vatues of slant and
tilt are shown as cross-hatched for correspondence angle B varying from @/2 to =, Tilt 7 is measurcd relative
to one of the contours in the image, and varies from parallel (7 = 0) to perpendicular (¢ = #/2).
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(the unknown shape of T'). ‘T'he problem can then be solved by secking to account for as imuch as possible of
the variance in the surface contour in tenns of the projective component. ‘The constraint stems from the fact
that the processes that determing the shape of contour gencerators on actual surfaces usually do not impose the

same kind of systematic regularity as that imposed by orthographic projection.
4.2 The relationship between a contour generator and the surface

Given the contour generator T is a planar 3-1J curve, how does the surface 2 lie under I'? In terms of the wire
and ribbon, a primary question concerns whether the ribbon may twist along the wire. More formally, if the
plane containing I is 1, does the angle betwecen £ and IT vary along I'?

A result in diffcrential gcometry is that given a curve T defined by the intersection of a plane I1 and a
surface Z, if the angle between Z and I is constant along I', T is a line of curvature (see, c.g., [O'Neill, 1966,
p. 224]). Thus if the contour generator is planar, and that plane intersects the surface with a constant angle,
the contour generator is a line of curvature. The next issue is to determine the angle between IT and 2.

4.2.1 The geodesic and asymptotic restrictions

If the plane IT containing the contour generator I is perpendicular to Z, i.e., I' is a normal scction, then T is
geodesic. Conscquently the surface normal along T everywhere coincides with the principal normalto I'. In
essence, the contour gencrator follows a path on the surface which locally indicates where the greatest
curvature occurs. The binormal to the contour generator, being perpendicular to both the principal normal
and the tangent, coincides with the direction of least curvaturc. However all such binormals are parallel, for
the tangent and normal along I" only rotate in the plance I1.  Conscquently all lines of least curvature are
parallel; cquivalently, the strip of surface under the contour generator is a cylinder.

‘The previous discussion considered the case where the contour generator is geodesic; where the angle
between I and 2 is /2. If that angle is everywhere zero, then T1 coincides with the tangent planc of 2 and
the surface normal along T' coincides with the normal to 1. As mentioned carlier if a curve lies in a plane
everywhere tangent to the surface along the curve, that curve is asymptotic, i.c.. a locus of points of zero
Gaussian curvature. The importance of the asymptotic restriction is found in gloss contours. ‘The contour
generators corresponding to gloss contours in the image correspond to asymptotic curves on the surface.
Hence where glnsé contours appcar we know that the surface is locally developable (likewise. where point
specularities vecur we also know that the surtace must be doubly curved). 'T'o some extent we may further
understand the surface gecometry simply on the basis of the shape of the contour in the image without
determining the particular 3-D shape of its contour generator. If the contour is a straight line in the image we
cannot tell much, for the surface may be cither cylindrical or twisting (like a spiraling picce of paper). But if it
is any smooth curvce in the image the surface is roughly planar since the contour gencrator is restricted to be

planar and asymptotic.

4.2.2 Paraflelism
‘The discussion thus far has concerned the analysis of surface shape from a single surface contour.  ‘This
analysis requires that the contour gencrator I' may be determined from its image, however the constraint

afforded by planarity, general position, symmetry, and constant curvature will not always allow a strong

I sz e



Stevens -91- Uity of the constraints

determination of I'. It is perhaps not coincidental that, in fact, our perception of surface shape from a single,
uniamiliar contour is weak when compared to the vivid impression afforded by multiple, parallel contours
(fizurcs 13 and 20). 'The basis for the apparently greater constraint from parallel contours will now be
disciesed.

If surface contours are parallel in the image, then by the of gencral position, their contour generators are
parallcl. The fundamental issuc now concerns the behavior of the surface between the contour generators.
In the absence of independent sources of information about the surface such as shading or texture we must
make some @ priori assumption about the nature of the surface between the contour gencrators. A
conservative assumption would be that the surface extends in a “simple manner” between them. This can be
formalized by a sccond forin of general position: that the particular positions of the contour generators on the
surface are not critical, that if shifted slightly, the contour gencrators would project qualitatively the same.
This is equivalent to assuming that the surface is a cylinder between the contour generators.

We now usc the geodesic-asymptotic restrictions from the previous section, and consider two
interpretations for the cylindrical surface:  Either the surface is (a) curved and the contour generators are
parallcl geodcsics, or (b) flat and the contour generators are asymptotic curves. ‘To aid in visualizing these two
cases, compare figure 13 (geodesic interpretation) and figure 25 (asymptotic interpretation). Note that in the
latter case of asymptotic curves, the parallelism does not provide additional constraint on the surface solution
-- the contour generators lic in the same plane. Nor does the shape of cach contour gencerator in the planc; it
is as if the curves are merely arrayed on a flat surface. The interpretation of paraliel contour generators as
geodesics, however, constrains both the local surface orientation and the shape of the contour generators.

4.2.3 Computing parallel correspondence

Recall that the angle between the plane containing the contour gencerator and the surface is restricted to be
constant, hence the contour generator is a line of (greatest) curvature. Also, the lines of least curvature on a
cylinder are straight, parallel, and perpendicular to the lines greatest curvature. If a line of least curvature
were reconstructed in the image, the angle of interscction that it would make with a surface contour (a line of
greatest curvature) would be the projection of a right angle. ‘This angle constrains the local surface
oricntation, as alrcady demonstrated with regard to bilateral symmetry. In fact, the lincs of least curvawre
can be reconstructed.

In the orthographic image of a cylinder the lines of lcast curvature would project as straight and paraliel,
and cach would intersect successive surface contours at a constant angle (since the contour gencrators are
parallel). ‘This is illustrated in figure 26 (where the lines of least curvature arc superimposed on figure 13).
Note that we attempt to reconstruct only the projections of the tines of least curvature. ‘This may be achieved
by identifying points on adjacent contours whose tangents are parallel and connecting those points by straight
lines that arc parallel. This may be thought of as bringing points on adjacent contours into parallel
carrespondence. "Uhe constructed line representing the image of a line of lcast curvature will be termed a
carrespondence line. Note that if the surface contours are straight for a portion of their length (figure 27q) the
tangent to a point P on one contour may he parallel to various tangents on the adjacent contour, however only
onc choice would result in g correspondence line that is parallel to the other correspondence lines between
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Figure 25. The contours secem to be interpreted as the image of asymptotic curves on a planar surface. Note

that the surface appears flat in given this interpretation.
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Figure 26. In the orthographic image of a cylindrical surface the lines of least curvature project as straight and
parallel, and cach intersect successive surface contours at a constant angle.  1dentifying points on adjacent
contours whose tangents are parallel and connecting those points with lines that are parallel cstablishes
parallel correspondence. one basis for postulating that the underlying surface is a cylinder (subject to general
puosition).
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curved portions of adjacent surface contours (figure 27h).!

This correspondence is unique in general, and therefore may be used as a constructive criterion for
detecting parallelism between surface contours and for postulating that the surface is a cylinder.2

An important conscquence of the paralic! correspondence is that the surface orientation is necessarily
constant along the lines of least curvature (in orthographic projection, as we have been assuming). Thus if the
surface orientation were determined along the contour, it can be simply propagated along the correspondence
lincs to provide a complete, interpolated solution to the surface orientation across the cylindrical surface
betwecen parallel surface contours.

We have scen that assuming that the contour generator T is planar and that the angle between the plane
containing I' and the surface is constant along I" restricts the surface under T to be a cylinder. Also, for
paraliel surface contours the two forms of gencral position together restict the surface to be a cylinder.
Conscquently, the curvature of the surface is attributed cntircly to the curvature of the contour gencrator, that
being a line of greatest curvature.

Notc that the cylinder restriction is only local, for the paralicl correspondence need only be cstablished
between adjacent surface contours, and the parallclism between reconstructed lines of least curvature is
defined only locally. Conscquently, the cylinder restriction may be applied, for example, to the surface
contours in figures 20 and 28 where the surface may be approximated locally by patches of cylinders while the
global surface is not cylindrical.

4.2.4 Opacity

We now consider the constraint afforded by restricting the surface to be opaque. In gencral, opacity does not
significantly restrict the shape of the underlying surface. However the opacity restriction is important if, as
before, the contour generator is assumed to be a line of greatest curvature and the surface under the contour
generator is assumed cylindrical. In the following, a geometrical construction will be described that shows
how thesc restrictions constrain the range of orientations to which the parallel lines of least curvature would
project. ‘The angle between those lines and the tangent to the surface contour is, again, the projection of a
right angle. ‘Thus the opacity restriction is uscful in constraining local surface orientation in the same manner
as skewed symmetry and parallel correspondence. ‘The restriction imposed on slant and tilt as a function of
this angle is shown in figure 24.

The constraint follows from the fact that if a line of curvature is continuously visible from a given
viewpoint, so must an adjacent line of curvature. "This can be described geometrically in the following way:
The correspondence lines (the projections of lincs of least curvature) that connect adjacent surface contours
would make no intersections with the surface contours except at their terminations. That is, the situation in
figure 294 would be disallowed. (Note that in figure 13, where this does not arise, the surface may be
transparcnt nonctheless.) Now, given a single surface conour (the image of a line of greatest curvature on a

1. Selection of that choice may be accomplished by a lucal. parallet algorithm similar to that in [Stevens, 1978),

2. Note that the correspondence is not uniguc if., for instance, the parallel surface contours are periodic, as in figure 13 One solution in
that casc is ta chouse the paraliel solution which resufts in the shortest correspondence lines.
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Figure 27. If the surface contours are straight for a portion of their length, as in a, the tangent to a point P on
one contour may be parallel to vartous tangents on the adjacent contour, however only one choice would
result in a correspondence line that is paraliel to the other correspondence lines between curved portions of
adjacent contours, as in b.
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Figurce 28. The cylinder restriction is only local, for the paralle] correspondence nced only be established
between adjacent surface contours, and the paraflclism between reconstructed lines of least curvature is
defined only locally. Consequently the local cylinder restriction may be applicd to the surface contours above
although the global surfacce is not cylindrical.

[>
i
i
+
i

e




e TP ey P S T e e e T e

Stevens -97- Utility of the constraints

3
2
i
]
]
3

P

P3

B P,
/e

e
2\
N

Figure 29. The opacity restriction disallows the correspondence lines (the projections of lines of least
curvaturc) that connect adjacent surface contours to intersect the surface contours cxcept at their
terminations. ‘That is, the situation in « is disallowed.  Opacity provides some constraint on the relation
between a contour generator and the underlying surface. Towards representing this constraint, we represent
the surface contour by its Gauss map onto a semi-circle, asin b.
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Figurc 30. The surface underlying the contour (heavy line) is assumed to be a cylinder, and the problem is to
determine the orientation a to which the lines of feast curvature would project. ‘Three examples of a are
shown above. The opacity restriction places some constraint on a.
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Figure 31. The image of the lines of feast curvature map to a single point on the Gauss map. If opaque, that
point cannot alrcady be occupicd by the mapping of the surface contour. In a the surface contour is a shallow
curve which maps to a small arc on the Gauss map. This docs not strongly constrain the possible oricntations
of the correspondence lines (the projected lines of least curvature). But in b the curve covers much of the
Gauss map. hence the orientation of the lines of Ieast curvature is strongly constrained. One choice of that
oricntation is shown, and the position of an adjacent, parallel surface contour is drawn. 'The opacity
restriction then provides constraint on surface orientation by the oblique correspondence angle.
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cylinder) we have some constraint on where an adjacent line of curvature would project, and this in turn
constrains the local surface shape.

This constraint is conveniently represented by the Gauss map (sce, for example, [Hilbert & Cohn-Vossen,
1952]). A Gauss map is a simple representation of the range of orientations of tangents along a curve. The
given curve is mapped to an arc on a unit semi-circle where cach point on the curve maps to the point on the
semi-circle whose radius is parallel to the tangent to the curve. This is illustrated in figure 295. Qbserve how
tangents at various points P map to corresponding points on the semi-circle.

The next step is to use the Gauss map to represent the range of possible orientations of the correspondence
lines. Let that orientation be a, which maps to a single point on the semi-circle (that point P whose radius has
the orientation a). In figure 30 three choices for a are shown which are consistent with the surface being
opaque. Now, the constraint that the correspondence lines not intersect the surface contours equates to the
restriction that the point P not lie on the arc of the semi-circle alrcady cavered by the surface contour. The
degree of constraint imposed by the opacity restriction depends on the surface contour. In figure 31a the
shallow contour maps to only a short arc, and the correspondence lines could have a large range of
orientations. But in figure 315 the correspondence lines are restricted to a narrow range of orientations.

Given that the correspondence lines are the projections of lines of least curvature which on a cylinder are
identically the binormals to the planc containing the lines of greatest curvature, the orientation to which the
correspondence lines projects provides us with the tilt component of surface orientation for the plane
containing the given curve. It is worthwhile to refer back to figures 155, 16, and 1856, which seem to be
patches of cylinders. The curves would be lines of greatest curvature, the straight lines would be lines of least
curvature. Their mutual orthogonality would explain our interpretation of them as right angles in 3-D.

4.3 Criteria governing the tangential/surface contour decision

Earlier we discussed the distinction between tangential contours (silhouctte boundaries along which the line
of sight grazes the surface) and surface contours, noting that surface contours include silhouctte boundaries
that are not tangential contours. Marr [1977a] has delincated properties of the sithoucttes of gencralized cones
(whose beundaries are tangential contours) - surfaces whose shape can be recovered from their sithouettes.
The sitiouctte of a generalized cone cxhibits qualitative symmetry: where the correspondence lines
connecting symmetric segments of the contour would be perpendicular to the axis of symmetry. For instance,
the symmetric silhouctte in figure 144 is generally interpreted as a vasc-like object, and the contours are seen
as tangential contours,

Similarly, gecometrical criteria can be given which indicate that a contour is a surface contour. (Note that
non-geometrical means also exist, ¢.g.. determining that the corresponding contour gencrator is a shadow
cdge, or a gloss contour or a discontinuity in surface texture) Two geometrical criteria are suggested by the
preceding discussion,  First consider qualitative symmetry where the correspondence lines arc not
perpendicular to the axis of symmetry (as just discussed in the case of bilateral symmectry) but oblique to the
axis (as in figure 2356). When achicved, this skewed symmetry suggests a surface contour, as opposed to a
tangential contour, interpretation. Sccondly, if parallel correspondence between contours can be achicved (as
in figurcs 13. 14, and 15b) those contours can be interpreted as surface contours.
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5. SUMMARY

1. The analysis of the shape of a surface from surface contours may be decomposed into two problems:
reconstructing the corresponding 3-1) curves (the contour generators) and determining their relation to the
surface. 'This decomposition scparates the problem of determining the projective gcometry from that of
determining the intrinsic gcometry.

2. The first problem is constrained by general position, planarity, symmetry, and minimum curvature
variation.

3. The sccond problem is reduced by assuming the angle between the surface and the plane containing the
contour gencerator is constant. Then if that angle is a right angle, the contour gencrator is geodesic; if the
angle is zero, the contour gencrator is asymptotic. In either case the contour gencrator is also a line of
curvature. Since it is also planar, the surface is locally a cylinder.

4. We also arrived at the cylinder restriction in the case of parallel surface contours, given the two forms of
the principle of general position. The opacity restriction is also uscful, given the planarity and geodesic
restrictions, in understanding how the surface lies under a contour generator.

5. We have considered instances when the various constraints are valid. Surface markings on synthetic and
biological objects and the edges of cast shadows are often geodesic and planar. Gloss contours are asymptotic
and planar, at lecast in the case of distant light sources and orthographic projection. Hence if the contour
generator can be reconstructed as a curve in 3-1D, the surface orientation along the curve can be computed
subject to either the geodesic or asymptotic interpretations.

6. Constraints on the intrinsic gcometry are alsa provided by surface contours even if the contour generator is
not well determined in space: Gloss contours, highlights, and shading edges tell us of the local Gaussian
curvaturc in some cases.
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APPENDIX A
TILT EXPERIMENTS

Two experiments were performed concerning the judgment of surface tilt from configurations of intersecting
straight lines. The first established that the tilt judgments are well defined relative to the geometry of the
figurc and indcpendent of the orientation of the figure on the display screen. The second experiment
demonstrated that the tilt judgment is dependent on the relative lengths of the two lines and on their angle of
intersection. It is concluded that we probably solve the tilt by assuming that the lines arc actually
equal-length and that the angle of intersection is a right angle in three dimensions.

Judgements of surface siant were not made; the apparatus was designed to allow tilt to be decoupled from
slant. While judgments of surface slant from line drawings are gencrally poor both in terms of
undcrestimation ("regression to the frontal plane™) and substantial variability, this study has discovered that
surface tilt judgements can be considerably more accurate and precise. The two experiments shared a
common dcesign which is discussed in the following.

A.1 Experimental design

A.1.1 Apparatus

The subjects observed line-drawn figures on a Knight rasterscan CRT display. The lines were luminous
against a dark background; the room was darkened. The figures were viewed monocularly through a 25 mm
diamecter circular aperature of an occluding mask positioned roughly 50 cm from the display.

In order to measure tilt, it was planned that the Ss would adjust an actual rod so that it appcarcd normal to
the visualized surface. The rod was situated between the S and the CRT screen, attached to a transparent
plate by a small universal joint which allowed the rod to be placed at any spatial orientation. When viewed
monocularly the rod appeared to extend from the surface suggested by the figure towards the S. By grasping
the free end. the S could place it so that it appeared normal. The tilt component was then projected onto the
imagc planc (by displaying a vector with one end fixed so that it was coincident with the fixed end of the rod,
and rotating it until it was occluded by the rod from the S's viewpoint). Measuring the tilt component in this
manner avoided having the S adjust the tilt direct. However this precaution was unnccessary: Instead of this
apparatus, the S merely rotated a displayed vector to appear nonnal to the imagined surface. Surprisingly, the
Ss reported greater confidence when judging the projected tilt directly than when adjusting the rod. This was
reflected in improved consistency between trials. Presumably the rod was more difficult to position duc to the
additional, implicit task of adjusting its slant.

In the first experiment of the first serics, the length of the normal vector was roughly comparable to the
dimensions of the stimulus figure. The Ss commented that the fength seemed inappropriately long when the
surface appeared nearly paralic! to the image plane (slant roughly zero), and that the vector often appeared to
change length as it was rotated in the image. It was suspected that the length of the normal vector was
affecting the perecived surface orientation, therefore in subsequent experiments the vector was extended
beyond the ficld afforded by the aperature. This enhanced the illusion of the vector being normal to the
surface. With the vector continuously displaved. Ss stated that a range of orientations were cqually
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acceplable, however if the vector were removed and redisplayed, the inital impression of the oricntation of
the vector could be used o make more critical judgements. ‘Therefore, in later experiments. only the surface
contours were continuously displayed, the normal vector would be flashed on the screen, providing the S with
a glimpse of the vector to compare with the imagined norma).

‘The control of stimulus display, rotation of the vector, and data collection were all performed interactively
by keyboard. Rotation was stepped clockwise and counterclockwise in five-degree and one-degree
increments. ‘The S would position the normal vector by a succession of keystrokes that first flash the vector
then make incremental rotations.

A.1.2 Procedure

An attempt to mcasure the subjective tilt of an orthographically projected surface must contend with
spontancous reversals in depth which affect the direction of the tilt. (In the absence of perspective, the depth
interpretation of a figure is ambiguous.) One factor that affects the interpretation is the orientation of the
figure in the image plane. For example, an cllipse oriented with a horizontal major axis can cither be scen as a
disk with the lower edge nearcr, or with the upper edge nearer. In general, when the perceived surface is
roughly horizontal, there is a tendency to prefer the interpretation with an upward pointing ncrmal.
However, if the figure is oriented such that the surface is roughly vertical, the surface may be interpreted with
the nonmal pointing to the left or the right with roughly equal preference, With the ellipse, therefore, if the
figure were rotated in the image planc, at some boint the observer may experience a reversal in depth. 1f the
left edge of the disk were seen to lic further than the right, then the normal would point horizontally to the
left, and vice versa,

Fach S was given an introduction to the depth reversals. Given a figure, the S was asked to indicate the
surface orientation (by orienting a picce of paper or the palm of the hand). Then the S was asked w sce it
"another way". The figures used in this study were oriented such that the tilt dircctions associated with the
two depth interpretations were in the second and fourth quadrant. Howcever, the Ss were generafly to use the
interpretation that placed the normal in the second quadrant. This restriction was not described to the Ss in
terms of quadrants; the Ss would occasionally place the vector in the fourth quadrant, whercupon it was
requested that the surface be secen “the other way™. Reversals in interpretation were casy to achicve by all Ss.
Before collecting data, cach S was given a few trials on figures that were similar to those in the cxperiment.
‘The vector was supposed to be seen as the normal o an opaque surface, hence projecting towards the S.

A.2 Experiment |

‘The goal of the first experiment was to simply show that tilt judgements can be made with precision from a
simple intersection of two straight lines (sce figure A-la). ‘The tilt was cxpected to be somchow determined
by the contour geometry, independent of the orientation of the figure on the display screen, i.c., there was an
cxpectation for a lincar association between tilt judgements and image orientation (with unity stope).

A.2.1 Mcthod
Stinwali: "The intersection figure was deseribed by the ratio R of the two line lengths, the obtuse angle of
intersection A, and the oricntation a of the figure on the sereen (figure A-15). The surface tilt was measured
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by the orientation 7 of the normal vector.  All angles were measured counterclockwisce. In experiment I,
R =027 and B8 = 110 deg. ‘The experimental variable was a.  Since spontancous reversals in depth
interpretation were expected if the total rotation exceeded 90 deg, the various orientations in the image were
restricted 0 within a range of 70 deg, i.c.. a = 10, 20, 40, 60, and 80 deg. 'The figures subtended roughly
sceven deg of visual angle.  During this experiment, data was also collected for a similar figure, a
paraliclogram. The parallelogram can also be described by the R, B, and a paramcters. In this experiment,
these parameters were the same as for the intersection figure.

Procedure: The experiment involved randomized presentations of the two types of figures at five orientations.
Each of the 10 presentations were given once with unlimited viewing time. For each presentation, the S first
viewed the figure, then the normal vector was displayed and positioned.  Six unpaid, volunteer graduate
students (five male, one female) were subjects.

A.2.2 Results

The data were tabulated separately for the intersection and parallelogram figures. In both cascs, the linear
association between ¢ and a was significant:  for the intersection figures r = 0.98 (¢ = 27.736, 4.f = 30,
p<0.05); for the parallelogram figures r = 0.94 (1 = 14473, df = 30, p<0.05). The computed slopes of
simple linear regression lines were: 0.96 (standard crror = 0.035) for the intersection figures and 0.95
(standard crror = 0.066) for the paraliclograms. Neither slope was significantly different from 1.0:
(1 =0785,df = 30,p>02)and (1 = 1.126, df = 30, p>0.2), respectively.

The data for both types of figure for cach S were then analyzed individually, and the correlation
cocfficicnts were all significant: the Icast significant finding wasr = 094 (1 = 4.007. df = 3, p<0.05). For
the intersection figures, the slopes of the lincar regression lines for cach S ranged from 0.88 10 1.05. In
comparing these slopes to 1.0, none of the differences reached significance (p > 0.2). For the parallclogram
figurces, only the slopes for two Ss were significantly different from 1.0,

‘The values of  were reduced by the quantity (a-10.0) so that the judgements of tilt could be normalized to
onc image oricntation, a = [0 deg. ‘The resuiting mean tilt for the intersection figures was 104.0 deg
(s.d. = 1.58 deg). and for the parallelogram was 101.4 deg (s.d. = 3.36 deg). ‘I'he difference between these
two means did not reach significance (1 = 1.57, df = 8, p> 0.1).

A.2.3 Discussion
We conclude that, at Icast for the surfaces suggested by a pair of intersecting lines or a parallclogram, the tilt is
not functionally dependent on the particular oricntation of the figure in the image planc. ‘The low standard
deviations of 1,58 and 3.36 deg demonstate that tilt judgements can be well defined. "I'he parallelogram and
interscction figures share the same contour geometry, described by the parameters R and 8.

‘The basic finding given by this experiment was that on very simple configurations the surface orientation
can he well defined. The intersection figure strongly suggests a surface, and the tilt component can be judged

with precision, ‘The intersection figure is further examined in experiment 1.
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Figure A-1. 'The subjects obscrved i simple intersection figure («) for varying values of orientation a and
angle of intersection 8. and adjusted the apparent orientation 7 of surfacce tilt (b).
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A.3 Experiment 11

The goal of this cxperiment was to demonstrate that, for the intersection figure, tilt is dependent on the
relative lengths of the two contours and on their angle of interscction. FFrom experiment | we can discount the
angle of oricntation in the image as a functional paramcter that governs the tilt.

A.3.1 Mcthod

Stimuli: The intersection figures were presented with three values of angle of intersection 8 = 110, 130, and
170 deg, and three length ratios R = 0.272, 0.455, and 0.727. So that the presentations would appear varied,
two image oricntations a = 20 and 60 deg were used. In this experiment, the normal vector was extended

beyond the ficld of view provided by the occluding mask.

Procedure: The total of 18 presentations were performed with successive presentations alternating between

= 20 and 60 deg. The sequence was randomized in terms of 8 and R. Each presentation was given once,
however the data from the two image oricntations would cffectively provide two data points for cach
combination of 8 and R. Five unpaid, volunteer graduate students (four male, one female) were subjects.

Only one subject (male) had participated in experiment 1.

A.3.2 Results
The  data collected at @ = 60 were reduced by 40.0 in order to normalize to @ = 20 deg. The valucs of 7 for

cach image orientation were then tabulated for cach of the nine combinations of 8 and R. The results of a
two-way analysis of variance with cqual replications are given in table A-1.

‘The data from a = 20 deg were compare to the adjusted data from a = 60 dcg to further test whether
there is a functional dependence of 7 on the image orientation. ‘The results are given in table A-2. The
differences between the two sample means reached significance in three instances (8 = 130, R = 0.27;
B =110, R = 0.40; and B = 110, R = 0.73) however the actual differences arc 0.4, 2.4 and 7.4 deg,
respectively. The mean tilt judgments are shown in figure A-2 as short line scgments that extend from the
intersection, much as presented to the Ss. However in the actual experimental situation, the line segment that
was adjusted to appcar normal to the intersection cxtended beyond the ficld of view and thus did not
contribute a length to the local configuration. In observing figure A-2, the apparent 3-1) length of the normal
will appear inappropriate for the configurations ncar the lower right, especially for the case where R = 0.73
and B8 = 110. As a conscquence, the line representing the image of the normal will probably appear
overrotated counterclockwise in those cases. In the experiment, however, these choices of tilt orientation

appcarcd appropriate.

A.3.3 Discussion

A strong functional dependence of 7 on both 8 and R was found. (However the judgements of tilt also
exhibited some dependence on the image orientation, as noted.) 'The values of 7 were compared to the
corresponding values that would be predicted if the lines were perpendicular and of equal length in 3-D.
‘These values are given in the third column of table A-2. ‘The judgment means did not differ significantly
from those predictions, except where indicated with superscripts.
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Source S.S. d.f. M. (ss./d.f) M.S.R.
Between 8 1340.188 2 670.094 23.805
Between R 1351.438 2 675.719 24.005
B-R interaction 404.390 4 101.098 3591
Residual 2280.047 81 28.149

Table A-1. Analysis of variance. Mean tilt (combined data from a = 20 and 60 dcg) examined according to
effects of obtuse angle B and length ratio R. All M.S.R.’s rcach 0.05 significance.
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B

170
170
170

130

130
130

110
110
110

R

0.27
045
0.73

0.27

0.45
0.73

0.27
045
0.73

Predicted

110.68
111.69
113.45

112.12

115.96
12491

111.45
114.48
124.88
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Mean ¢ for a=20

110.73 (1.53)
110.33 (3.06)
112.73 (2.82)

112.93 (2.00)

116.33 (4.60)
12493 (6.92)

111.53 (5.60)
117.73 (3.34)!
123.70 (5.66)

Mecan 1 for a =60

111.13 (1.76)
111,13 (3.69)
113.13 (4.59)

113.33 (6.86)

119.90 (4.09)?
127.13(6.53)

117.13 (7.31)
120.13 (10.86)
131.10 (4.27)

Appendix A

Comparison

(»>02)

(»>02)
(>02)

(p<0.05)*

(¢>02)
(2>02)

(>02)
(< 0.05)*
(p<0.05)

102< p<0.1) %005¢<p<0.1) }p<0.05) *variances significantly different by F-test.

Table A-2. Values of mean tilt 7 (with standard deviations in parcntheses) for two image oricntations, a = 20
and 60 deg. over nine combinations of obtuse angle 8 and length ratio R. ‘The last column shows the results
of comparison of the means at the two values of a. In comparing the two means, if the variances were not
significant, then a rtest was performed. Each mean was also compared to the corresponding theoretic value,

and cxcept where superscripted, the differences did not reach significance (p > 0.2).
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R=0.27 R=045 R=0.73

Figurc A-2. 'These figures show the mean judgements of surface tilt as a function of relative line length R and
angle of intersection 8. Note that the apparent 3-1) length of the nonmal will appear inappropriate for the
configurations ncar the lower right.  As a consequence, the line representing the image of the normal may
appear overrotated counterclockwise in those cases. In the experiment, line representing the normal extended
beyond the field of view, and these choices of tilt orientation appeared appropriate.
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; ‘ Consider the case where the vectors are assumed to be equal-length and orthogonal, however their actual

lengths arc unspecified. This case admits an exact solution t the surface orientation. Without loss of
: generality, have us = 1 and uy = 0 (i.c., the image coordinate system is rotated so that the x axis is collinear
4 with the imagc of the vector U, and the projected length is normalized to 1). ‘Then the expression for the

normal N is
N = -wwi + (Uva - v2)j + vk (A)
n = Uyl + (Uvs - V1)) (A.2)
i Since U and V arc orthogonal, their dot product is zero
vi+ uv:=0, (A3)
And since they arc equal-length
1+ul=vl+ Vy2 + v, (A4)
Substituting v: from (A.3) into (A .4) ;
1+ Uzz = sz + Vy2 + V:z/lhz. (A.5) !

' Similarly, subsititute v: from (A.3) into (A.2)
' n = Ui + (Ui + Vl/“l)j

or
wn = -ulvi + (uz2 + Dvij. (A.6)
From (A.6) the tilt is expressed by
‘ r = tan’ [(ul + Dve 7 -udw). (A7)
' We have now w sol- ¢ (A.S) for w2, Note that this assumes that W is nonzero, ic., that the vector u is l

foreshortened. If that were not the case, then trivially 7 is 90 deg (perpendicular to u). Solving (A.S) for u:?
gives

ul = [+ 2w + )2+t + )2 4 w2 + v (A.8) |

Substituting (A.8) into (A.7) gives us the desired expression for the tilt . « '

Note further that from (A.3) we have that ]

Vi = -Vi/Ue.

e e e

Therefore u: and v: can be computed and therefore slant can also be computed from (A.1) by a similar
process.
In conclusion, when the visual system is presented with well-defined lengths at a corner or intersection

T R

configuration, the angle of intersection is assumed to be a right angle, and the lengths arc assumed cqual.
‘These two constraints are sufficient to admit a solution of local surface orientation up to a slant reflection,
and, in fact, appcar to be utilized by the human visual system.
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APPENDIX B
SLANT RESOLUTION EXPERIMENTS

The internal form in which slant is represented was studied experimentally, by measuring lower-limit
estimates of the internal precision to which slant is stored. While the resolution cannot be directly measured,
the representation would have a grain of resolution no worse than the judgment variance. The apparatus
should therefore provide the subject with excellent visual input, and yet the visual task must be solvable only
by performing slant judgments. The magnitude of the variance as a function of slant angle was determined in
order to arguc the likelihood of a various forms for representing slant.

Three experiments were performed: The first examined various slants in the range 0 < o < 44 degrees,
while holding tilt constant at 90 degrees (i.e., the surfaces were rotated about a horizontal axis). The second
experiment examined the same range of slants, but with tilt held constant at 45 degrees. Finally, slant
judgments for large slants (60 < ¢ < 80 degrees) were examined for constant tilt of 90 degrees. The
conclusions of the three cxperiments are given in section B.S. The method was substantially the same in the
three experiments, hence described in detail in the following

B.1 Experimental design

B.1.1 Apparatus

The experiment was designed to present a well illuminated and highly textured planar surface to a subject
whose task was 10 maich the slant of that surface by adjusting the stant of another surface. ‘The two surfaces
were placed so that they appeared adjacent in the visual field, however they differed considerably in distance.
"The distances to the fixation points of the two surfaces were 38 and 76 cm, the adjustable surface being the
ncarer. Both surfaces were viewed binocularly, however head movements were climinated by using a chin
rest. ‘The Ss were instructed to compare the slants of the surfaces at fixation points marked on the surfaccs.
The line of sight to cach fixation point was horizontal; the horizontal displacement required to shift gaze
between the two fixation points was approximately 10 degrees.

ach surface rotated about a horizontal axis (i.c.. the tilt was vertical), and the slant (angle between surface
normal and the line of regard) was indicated by a protractor. The slant could be set and read with precision
better than 1/2 degree. ‘The adjustable surface was 15 em (horizontal dimension) by 17 em: the other surface
was viewed through a 14 cm (horizontal dimension) by 9 cm opening in a barricr placed immediately in front
of that surface. 'the opening served to occlude the boundarics of the surface being examined. The two
surfaces had similar illumination.

The texture used in the first experiment was a gauze material with fine fibers, chosen to provide an
excellent surface for sterco viewing. However a slight concern arose with that texture: 'The gauze provided
lincar markings oriented with the surface tilt that might have allowed judgments that did not require
matching perceived slants, but simply the adjustment of the surface slant so that the lincar markings on the
two surfaces appearcd paralicl from various viewpoints. Although the chin rest prevented head movements,
the separate monocular views from the two cyes might have been sufficient. Hence in the second and third
cxperiments the surface texture had no lincar markings: the surfaces were the commercially-available
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Mccanormal "Normatone type 651" transfer pattern (a texture resembling the patterns on a giraffe).

B.1.2 Procedure

Each experiment consisted of multiple presentations of a randomized sequence of slants presented on the
farther surface. The Ss were instructed to sct the nearer, adjustable surface to the same slant as that presented,
converging on their match by intentional over- and under-cstimation. ‘The Ss closed their cyes or averted
their vision while the successive slant was adjusted for presentation. At the midpoint in the experiment the
Ss were given a few-minute rest. The first scquence was used for training, and that data was not analyzed.

B.2 Experiment I

The first experiment measured slant judgments in three vicinities: near zero degrecs, near ten degrees, and
ncar forty degrees. Three slants were examined in cach vicinity, differing by two degrees.

B.2.1 Method

Procedure: Four unpaid, volunteer, male subjects participated. Each had excellent vision, and found the task
of matching slants to be natural and casy. The Ss were presented with nine slants: 0, 2, and 4 degrecs, 10, 12
and 14, and 40, 42, and 44 dcgrees. The tilt was held constant at 90 degrees (the slants were achieved by
rotations about a horizontal axis). The sequence of nine slints was presented seven times after the initial, trial

scquence.

B.2.2 Results

The slant judgments for each S were analyzed scparately. The means and standard deviations were computed
for the seven trials at cach slant (table B-1). The low standard deviations are notable. ‘The slant judgments for
similar slant angles, for cach subject were compared to determine if the mcans for similar slants were
significantly different, thereby providing another measure of our precision in performing slant judgments.
For instance, the slant judgments at 10 and 12 degrees were compared to deterning if their means differed
significantly. It was found that for slants that differed by four degrees the means were significantly different
(p > 0.05), cxcept for subject K where the difference in mceans at 40.0 and 44.0 degrees did not reach
significance (p> 0.10, 1 = 145, d.f. = 12). The judgments of slants that differed by only two degrees differed
significantly (p > 0.05) in roughly onc third of the comparisons. For instance, the judgments for subject JH at
0.0 and 2.0 degrees of slant were not significantly different, but at 2.0 and 4.0 degrees the means differed
significantly. Similarly, the judgments for subject SU between 12.0 and 14.0 degrees slant were significantly
different, but thosc between 10.0 and 12.0 were not. There was a weak overall tendency for slants differing by
two degrees to be less distinguishable at slant angles around 40 degrees than at smaller slant angles. ‘The mean
slant values and the means of the standard deviations are shown in table B-2.

B.3 Experiment 11

‘This experiment was similar to the first experiment, but performed with the apparatus tilted 45 degrees

(r = 135 dcgrees).
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Slant

0.0
20
40

10.0
12.0
14.0

40.0
420
40

Subject JH

1.21(1.82)
293(1.711)
4.83(0.72)

11.46 (1.75)
11.21 (1.68)
15.57 (3.10

37.79 (2.38)
38.86 (3.08)
41.11 (2.36)
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Subject EM

-0.71 (1.15)
1.89 (2.43)
361 (2.60)

9.07 (1.67)
9.76 (3.12)
13.37 (1.48)

37.87 (1.92)
37.76 (1.39)
39.57 (1.72)

Subject SU

0.21 (1.38)
240(1.52)
4.14(1.73)

1243 (2.44)
14.64 (1.75)
16.79 (1.35)

3993 2.09)
41.11(1.37)
4243(1.72)

Subject K1

-0.43(0.19)
0.18 (1.48)
2.93 (1.06)

8.83(1.33)
10.14 (1.86)
11.11 (1.27)

41.79 (2.74)
42.64 (3.00)
43.50(1.53)

Table B-1: Individual subject means (and standard deviations)

Table B-2: Mcan slant judgments, and mcan subject standard deviations

Slant Mecan (std. dev.)

0.0 0.07(1.14)
20 1.85(1.79)
40 3.88(1.52)

10.0  10.45(1.80)
120 11.44(2.10)
140 14.21(1.80)

40.0 39.34(2.28)
420 40.09(2.21)
440 41.65(1.83)

Appendix B
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B.3.1 Method

Procedure:  Four unpaid, volunteer. male subjects participated (three of these participated in the first
experiment also). ‘The Ss were presented with randomized sequences of four slants: 0, 2, 42, and 44 degrecs.
Each S had a trial sequence followed by ten sequences for which data were collected.

B.3.2 Results

The means and standard deviations of slant judgments were computed separately for each S and each slant
angle (table B-3). The slant judgments at a tilt of 45 degrees are not significantly diffcrent than those at tilt of
90 degrees from experiment | (neither the mean slant judgments, nor the means of the standard deviations of
the judgments differed significantly by -test). The second test was to determine for cach S whether the mean
judgments at zero and at two degrees slant were significantly different (similarly for 42 and 44 degrees slant).
Only in two instances the mecans were not significantly different:  for subject SU at 42 versus 44 degrees
(p>0.1, r = 1.57, d.f. = 18), and for subject DW between zero and two degrees (p> 0.2, r = 1.17, d.f. = 18).
Otherwise, the judgments of slant differing only by two degrees were significantly different. The data
collected at 45 degrees of tilt demonstrated no consistent underestimation or regression to the frontal plane.

B.4 Experiment 111
The final experiment examinced slants near 60 and 80 degrees. Tilt was 90 degrees.

R.4.1 Mcthod
Procedure: Four unpaid, volunteer, male subjects participated (some were in the previous experiments). The
slants were 60, 62, and 78, 80 degrees presented in scven trials in randomized sequence. The data from the

first trial were not used.

B.4.2 Results

The data were analyzed in the same manncr as in the previous two experiments, and presented in tables B-5
and B-6. Again there is no regression to the frontal plane: the judgments arc accurate and have low variance.
The standard deviations for slants ncar 80 degrees are slightly less than at 60 degrees, on the average: ‘The
most significant difference was between 60 and 78 degrees (p< 0.10, 1 = 1.95,d.f. = 6).

‘The individual judgments at 60 and 62 degrees were compared to see if the mean judgments were
significantly different (similarly for 78 versus 80 degrees). Only for two subjects were the mcans
insignificantly diffcrent (between 60 and 62 degrees:  for subject Ki (p>0.20, 1 = 1.34, d.f. = 10) and for
subject EM (p>0.05. 1 = 2.03.d.f. = 10).

By now we have accumulated the standard deviations of slant judgments over a range of slants from zero to
80 degreces (sce figure B-1). The mean value was 1.65 degrecs.

B.5S Discussion

The experiments have demaonstrated that slanted surfaces can be accurately aligned on the basis of visual
information so that they arc spatially paratlel. The experimental design was such that the visual task of
matching stant was probably achicved by comparing the perceived slants of the two surfaces. and matching
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Slant  Subject DW Subject EM Subject SU Subject K1

0.0 0.85 (0.91) 2.75(122) 0.80(1.01) 1.19(1.60)
20 1.75 (2.26) 4.25(1.53) 3.23(1.25) 3.86(1.53)

290 40.45(2.19) 4422 (29)) 4080(1.23)  41.22(1.56)
4.0 44.05(1.77) 4793 (2.41) 41.88(1.78)  44.06(2.11)

Table B-3: Individual subject means (and standard deviations)

Slant  Mcan (std. dev.)

00 140(1.21)
20 327(1.64)

420 41.67(2.12)
440 44.48(2.02)

‘Table B-4: Mcan slant judgments, and mcan subject standard deviations
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Slant  Subject DW Subject EM Subject MM Subject KI

60.0 60.79 (1.49) 60.75 (1.86) 56.66 (0.75) 59.38 (2.12)
62.0 62.67 (0.52) 62.71(1.44) 60.00 (1.52) 61.17 (2.48)

78.0 77.58 (0.74) 80.88 (1.00) 77.00 (0.84) 76.92 (1.20)
80.0 79.83 (0.61) 82.83(1.08) 78.96 (1.31) 78.42(1.07)

Table B-5: Individual subject means (and standard deviations)

Slant Mcan (std. dev.)

60.0 59.40 (1.56)
620 61.64(1.49)

78.0  78.09 (0.94)
80.0 80.01(1.02)

Table B-6: Mcan slant judgments, and mean subject standard deviations
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Figure B-1. The standard deviations of slant judgments were computed for cach subject. for cach slant angle.
‘The averages across subjects are plotted above.  Error bars show inter-subject variance (bar length = two
standard deviations). ‘The mean value was 1.65 degrees.
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those values.

To reiterate, the two surfaces were adjacent in the visual ficld but differed considerably in distance. Head
movement was not allowed, and the boundarics of the target surface were obscured (except for extreme slants
where the top and bottom edges were visible but unlikely to be useful o the S since the dimensions of the two
surfaces were different and the Ss never saw the overall dimensions of the surface whose slant was 0 be
matched). The latter two experiments used surfaces that provided a rich texture for stercopsis but did not
aliow the simple aligning of texture edges so as to be parallel from both left and right eyes.

These cxperiments demonstrate that the visual system can match spatial orientations with precision, even
when the distances to the surfaces arc dissimilar. The average standard deviation is surprisingly small (1.65
degrees). Furthermore, for cach S, the mean judgments of slant almost always differcd significantly when the
slants to be matched differed by only two degrees.  These two results tell us something about the precision to
which slant may be resolved. if the judgments indeed were based on comparing perceived slants: the grain of
resolution in surface slant must at least as good as the precision in slant judgments, i.c., better than two
degrees at all slants.

In what manner is slant represented (by angle o, coso, or tane, for instance)? The cosine does not vary
rapidly near zero degrees: cos (0 degrees) = 1.0000, cos (2 degrees) = 0.9994, cos (4 degrees) = 0.9976. Thus
if slant were represented by coso, an inordinately fine grain of resolution in the representation would be
necessary to allow zero and four degrees of slant to be distinguished, let alonc zero and two degrees of slant
angle. On this basis, this form of representation is considered unlikely.

If the slant were represented by the tangent of the slant angle, then in order to resolve between siants
around zero differing by a few degrees of slant angle (where tan (0 degrees) = 0.000, tan (2 degrees) =
0.0349, tan (4 degrees) = 0.0699) and simultancously represent the range of slant angles from zero to 88
degrees (i.c., within two degrees resolution of 90 degrees slant), then the grain of resolution would have to be
on the order of one part in cight hundred. Although this experiment does not resolve the question of how
slant is represented, it probably allows us rule out the cosine and tangent forms. If slant angle were
represented directly, the range of slants would be represented by less than one hundred resolvable values
which (cffectively) vary lincarly with slant angle. The internal resolution would be commensurate with the
measured j.n.d. of slant.




